• 제목/요약/키워드: detoxifying enzymes

검색결과 64건 처리시간 0.022초

Rhizopus oryzae의 카드뮴 해독기작과 이에 관련된 동위효소의 변화 양상 (Detoxification Mechanism and Isoenzyme Pattern Changes against Cadmium in Rhizopus oryzae)

  • 이기성;김영호;박영식;박용근
    • 한국균학회지
    • /
    • 제23권1호통권72호
    • /
    • pp.86-91
    • /
    • 1995
  • Rhizopus oryzae의 카드뮴 적응 및 해독기작과 이에 관련된 세포내 생리 생화학적 변화를 조사하였다. R. oryzae는 카드뮴을 첨가 배양하였을 때 카드뮴 영향하에서는 carbohydrate metabolic pathway에 관련된 효소 활성(MDH, GPI)이 촉진되고 과산화물 제거에 관여하는 효소가 새롭게 유도(CAT2)된 반면, lactate를 이용하는 효소(LDH, ADH)의 활성이 감소된 사실은 중금속 영향하에서 세포의 성장과 에너지 공급을 위해 에너지 수율이 낮은 lactate를 이용하는 경로보다는 에너지 수율이 높은 TCA cycle 경로에 작용하는 효소들과 독성과산화물 제거에 관여하는 효소의 더 많은 derepression이 필요하다는 것을 알 수 있었다.

  • PDF

Identification of Genes for Mycothiol Biosynthesis in Streptomyces coelicolor A3(2)

  • Park Joo-Hong;Cha Chang-Jun;Roe Jung-Hye
    • Journal of Microbiology
    • /
    • 제44권1호
    • /
    • pp.121-125
    • /
    • 2006
  • Mycothiol is a low molecular weight thiol compound produced by a number of actinomycetes, and has been suggested to serve both anti-oxidative and detoxifying roles. To investigate the metabolism and the role of mycothiol in Streptomyces coelicolor, the biosynthetic genes (mshA, B, C, and D) were predicted based on sequence homology with the mycobacterial genes and confirmed experimentally. Disruption of the mshA, C, and D genes by PCR targeting mutagenesis resulted in no synthesis of mycothiol, whereas the mshB mutation reduced its level to about $10\%$ of the wild type. The results indicate that the mshA, C, and D genes encode non-redundant biosynthetic enzymes, whereas the enzymatic activity of MshB (acetylase) is shared by at least one other gene product, most likely the mca gene product (amidase).

Induction of Quinone Reductase , an Anticarcinogenic Marker Enzyme, by Vitamin E in Both Hepalclc7 Cells and Mice

  • Kwon, Chong-Suk;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • 제4권2호
    • /
    • pp.122-124
    • /
    • 1999
  • Induction of NAD(P)H : (quinone-acceptor) oxidoreductase (QR) which obligatory two electron reduction of quinones and prevents their participation in oxidative cycling and thereby the depletion of intracellular glutathione, has been used as a marker for chemopreventive agents. We postulated that vitamin E, an antioxidant, which induces QR as the gene of QR was reported to contain antioxidant reponsive element in the 5'-flanking region. Vitamin E resulted in significant induction of QR in both hepalclc7 cells and mouse tissues. QR induction was observed; to be maximal at 25uM vitamin E for hepalclc7 cells while it was maximal in the level of 2.5∼5 μmoles vitamin E/㎏ BW for mouse tissues. Thus the cancer-preventive effect of vitamin E may be exerted by it induction of intracellular detoxifying enzymes.

  • PDF

Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?

  • Dietz, Karl-Josef
    • Molecules and Cells
    • /
    • 제39권1호
    • /
    • pp.20-25
    • /
    • 2016
  • Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.

Fermented Prunus mume with Probiotics Inhibits 7,12-Dimethylbenz[a]anthracene and 12-O-Tetradecanoyl phorbol-13-acetate Induced Skin Carcinogenesis through Alleviation of Oxidative Stress

  • Lee, Jin-A;Ko, Jae-Hyung;Jung, Bock-Gie;Kim, Tae-Hoon;Hong, Ji-In;Park, Young-Seok;Lee, Bong-Joo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2973-2978
    • /
    • 2013
  • Maesil (Prunus mume Siebold & Zucc.), a member of the genus Rosaceae, has been reported to have antioxidative effects, as well as anticancer influence in many cancer lines. Thus, this present study was designed to investigate the inhibitory effect of fermented Maesil with probiotics against 7,12-dimethylbenz[a]anthracene (DMBA), 12-O-tetradecanoyl phorbol 13-acetate (TPA)-induced mouse skin carcinogenesis via its antioxidative potential. Mice were fed a diet containing fermented Maesil, containing either 1% (1% FM fed group) or 2% (2% FM fed group) along with probiotics following DMBA and TPA exposure. Continuous ingestion of the experimental feed markedly inhibited skin carcinogenesis, as evidenced by a marked decrease in papilloma numbers and epidermal hyperplasia as well as cellular proliferation and the percentage of proliferating-cell nuclear antigen positive cells. Also, the FM fed group showed an increase of total antioxidant capacity as well as an increased level of phase II detoxifying enzymes such as superoxide dismutase, concurrent with a decreased lipid peroxidation activity level. Taken together, these results suggest that fermented Maesil has the ability to suppress the development of DMBA-TPA induced skin carcinogenesis, via the reduction of lipid peroxidation, enhancing total antioxidant capacity and phase II detoxifying enzyme.

Conversion of Apricot Cyanogenic Glycosides to Thiocyanate by Liver and Colon Enzymes

  • Lee, Ji-Yeon;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • 제25권1호
    • /
    • pp.23-28
    • /
    • 2009
  • Some of the edible plants like apricot kernel, flaxseed, and cassava generate hydrogen cyanide (HCN) when cyanogenic glycosides are hydrolyzed. Rhodanese (thiosulfate: cyanide sulfurtransferases of TSTs; EC: 2.8.1.1) is a sulfide-detoxifying enzymes that converts cyanides into thiocyanate and sulfite. This enzyme exists in a liver and kidneys in abundance. The present study is to evaluate the conversion of apricot cyanogenic glycosides into thiocyanate by human hepatic (HepG2) and colonal (HT-29) cells, and the induction of the enzymes in the rat. The effects of short term exposure of amygdalin to rats have also been investigated. Cytosolic, mitochondrial, and microsomal fractions from HepG2 and HT-29 cells and normal male Spraque-Dawley rats were used. When apricot kernel extract was used as substrate, the rhodanese activity in liver cells was higher than the activity in colon cells, both from established human cell line or animal tissue. The cytosolic fractions showed the highest rhodanese activity in all of the cells, exhibiting two to three times that of microsomal fractions. Moreover, the cell homogenates could metabolize apricot extract to thiocyanate suggesting cellular hydrolysis of cyanogenic glycoside to cyanide ion, followed by a sulfur transfer to thiocyanate. After the consumption of amygdalin for 14 days, growth of rats began to decrease relative to that of the control group though a significant change in thyroid has not been observed. The resulting data support the conversion to thiocyanate, which relate to the thyroid dysfunction caused by the chronic dietary intake of cyanide. Because Korean eats a lot of Brassicaceae vegetables such as Chinese cabbage and radish, the results of this study might indicate the involvement of rhodanese in prolonged exposure of cyanogenic glycosides.

살충제분해에 관여하는 동양종(東洋種)꿀벌의 효소활성(酵素活性)에 관(關)한 연구(硏究) (A Study on the Enzyme Activities of a Honeybee(Apis cerana F.) Associated with the Degradation of Some Insecticides.)

  • 서용택;심재한
    • 한국환경농학회지
    • /
    • 제8권1호
    • /
    • pp.47-54
    • /
    • 1989
  • 동양종(東洋種)꿀벌 (Apis cerana F.)에 대(對)한 살충제(殺蟲劑)의 독성(毒性) 및 해독능력(解毒能力)을 조사(調査)하고 농약한계 사용량 결정에 기여하기 위하여 7가지 대표적인 살충제의 꿀벌에 대한 독성 및 해독효소의 활성을 조사하였다. 효소 활성은 해독효소로 알려진 microsomal oxidases, glutathione S-transferasecs, esterase와 DDT-dehydrochlorinase를 조사했고 성충(成蟲)일벌의 중장(中腸)을 사용하여 측정하였다. $LC_{50}$치의 측정 결과는 다음과 같다. 1. 공시 살충제중 DDT가 19ppm으로 독성(毒性)이 가장 낮았고 EPN이 0.75ppm으로 독성(毒性)이 가장 강(强)했다. 2. 준치사농도(準致死濃度)의 농약(農藥)이 성충(成蟲)일벌의 microsomal oxidase에 미치는 영향은 malathion 및 demeton S-methyl 처리가 aldrin epoxidase활성을 저해시켰고 N-demethylase활성은 carbayl 처리구에서 증대(增大)되었다. 3. Glutathione S-transferase(DCNB conjugation)활성은 diazinon과 malathion처리구에서 증대되었다. 4. Esterase는 malathion 및 permethrin처리구에서 ${\alpha}-NA$ esterase 활성(活性)의 저해(沮害)를 보였고 carboxylesterase와 AchE 활성은 거의 영향이 없었다. 5. DDT-dehydrochlorinase 활성은 carbaryl, malathion과 demeton S-methyl 처리구에서 저해를 보였다.

  • PDF

Benfuracarb 원제에 함유된 불순물들의 glutathione-S-transferase와 amidase 저해 특성 (Inhibition of glutathion-S-transferase and amidase by impurities in technical grade benfuracarb)

  • 염창섭;김성문;유지숙;허장현
    • 농약과학회지
    • /
    • 제6권1호
    • /
    • pp.31-35
    • /
    • 2002
  • 본 논문의 목적은 benfuracarb 원제(90.2%)에 함유된 불순물의 glutathione-S-transferase와 amidase에 대한 저해 특성과 해당 불순물의 구조를 밝히는데 있다. Benfuracarb 원제, 유효성분 및 불순물은 glutathione-S-transferase(GST)를 효과적으로 저해하였으나, 그 저해력은 GST 효소 저해제인 ethacrynic acid의 저해력보다는 낮았다. 즉, GST에 대한 benfuracarb 원제, 유효성분 및 불순물의 $I_{50}$은 각각 $9.7{\times}10^{-4}M,\;>1.0{\times}10^{-3}M,\;1.8{\times}10^{-4}M$이었으나, ethacrynic acid의 $I_{50}$$1.7{\times}10^{-5}M$이었다. Benfuracarb 원제, 유효성분 및 불순물은 amidase를 저해하였는데, 이들의 효소저해력은 iprobenfos의 저해력($I_{50},\;8.2{\times}10^{-7}M$)보다는 낮은 $6.0{\times}10^{-5}M,\;4.3{\times}10^{-4}M,\;7.6{\times}10^{-5}M$이었다. Benfuracarb 원제에는 4종의 불순물(IM $1{\sim}4$)이 검출되었는데, 이들 중 IM 2와 3은 GST와 amidase의 활성을 저해하였던 반면, IM 4는 효소활성을 저해하지 않았다. 이들 불순물 중 효소활성 저해특성을 갖는 IM 2와 3을 IR, $^1H$-NMR, $^{13}C$-NMR, LC-MS를 이용하여 구조를 분석한 결과, IM 2는 ethyl-N-isopropylamino propionate로, 그리고 IM 3은 ethyl-N-isopropyl-N-(chlorosulfenyl) aminopropionate로 확인되었다.

Signal Transduction Events Elicited by Natural Products: Role of MAPK and Caspase Pathways in Homeostatic Response and Induction of Apoptosis

  • Kong, Ah-Ng Tony;Yu, Rong;Chen, Chi;Mandlekar, Sandhya;Primiano, Thomas
    • Archives of Pharmacal Research
    • /
    • 제23권1호
    • /
    • pp.1-16
    • /
    • 2000
  • Many natural products elicit diverse pharmacological effects. Using two classes of potential chemopreventive compounds, the phenolic compounds and the isothiocyanates, we review the potential utility of two signaling events, the mitogen-activated protein kinases (MAPKs) and the ICE/Ced-3 proteases (caspases) stimulated by these agents in mammalian cell lines. Studies with phenolic antioxidants (BHA, tBHQ), and natural products (flavonoids; EGCG, ECG, and isothiocyanates; PEITC, sulforaphane), provided important insights into the signaling pathways induced by these compounds. At low concentrations, these chemicals may activate the MAPK (ERK2, JNK1, p38) leading to gene expression of survival genes (c-Fos, c-Jun) and defensive genes (Phase II detoxifying enzymes; GST, QR) resulting in survival and protective mechanisms (homeostasis response). Increasing the concentrations of these compounds will additionally activate the caspase pathway, leading to apoptosis (potential cytotoxicity). Further increment to suprapharmacological concentrations will lead to nonspecific necrotic cell death. The wider and narrow concentration ranges between the activation of MAPK/gene induction and caspases/cell death exhibited by phenolic compounds and isothiocyanates, respectively, in mammalian cells, may reflect their respective therapeutic windows in vivo. Consequently, the studies of signaling pathways elicited by natural products will advance our understanding of their efficacy and safety, of which many man become important therapeuitc drugs of the future.

  • PDF