• Title/Summary/Keyword: detonation velocity

Search Result 69, Processing Time 0.028 seconds

A Study of Normalized Smoothed Particle Hydrodynamics (정규 완화입자유동법의 고찰)

  • 박정수;이진성;박희덕;김용석;이재민
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.89-99
    • /
    • 2003
  • Smoothed particle hydrodynamics, SPH, is a gridless Lagrangian technique which is a useful alternative numerical analysis method to simulate high velocity deformation problems as well as astrophysical and cosmological problems. The SPH method brings about some difficulties such as tensile Instability and stress oscillation. A new SPH method, so called normalized algorithm, was introduced to overcome these difficulties. In this paper we aimed to estimate this method and have developed an one-dimensional normalized SPH program. The high velocity impact model of an aluminum bar has been analysed by using the developed program and a commercial hydrocode, LS-DYNA. The obtained numerical results showed good agreement with the results of the same model in reference. The program also showed more stable results than those of LS-DYNA in stress oscillation. We hopefully expect that the developed one-dimensional normalized SPH program can be used to solve hydrodynamic problems especially for explosive detonation analysis.

A Study on Dispersed Media Formation of Hydrocarbon Fuel by an Explosive Burster (화약 폭발에 의한 탄화수소계 연료의 분산매질 형성에 관한 연구)

  • Yoo, Jae Hun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.33-40
    • /
    • 2016
  • Liquid fuel can be easily exploded and release more energy of detonation than conventional explosives because it has different explosion mechanism. In order to analyze dispersion characteristics of liquid fuel for the safety purpose, two tests are conducted. First, pre-test, which is a computer simulation, is carried out by a software called ANSYS AUTODYN to eliminate the effect of a canister that usually causes irregular dispersion of the fuel. Second, field test is performed to find out the amount and density effect of bursting charge. High speed cameras are installed in front of the canister to visualize the mechanism. Velocity, area and radius of the dispersed cloud are measured by image processing software, these are shown that the amount of bursting charge affects cloud velocity and area but density is not a significant factor of cloud formation.

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

Studies on Through-Bulkhead Initiation Module Using VISAR (VISAR를 이용한 격벽 착화 모듈 특성 연구)

  • Jang, Seung-Gyo;Baek, Sung-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.217-225
    • /
    • 2010
  • A Through-Bulkhead Initiation Module(TBIM) works as the shock-wave generated by the detonation of donor explosive transmits to acceptor explosive. In order to estimate the minimum thickness of the bulkhead of TBIM, the structural stress of TBIM housing is calculated via modeling analysis, and which shows a sufficient margin in strength as the minimum thickness is bigger than 0.1 mm. The free surface velocity at the metal to explosive interface is measured using VISAR to determine the optimal thickness of bulkhead. The shock pressure is calculated from the measured free surface velocity, and the probability of TBIM with respect to the thickness of bulkhead is estimated by comparing the sensitivity of acceptor explosive with it.

  • PDF

Studies on Through-Bulkhead Initiation Module using VISAR (VISAR을 이용한 격벽 착화 모듈 특성 연구)

  • Jang, Seung-Gyo;Baek, Sung-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.16-24
    • /
    • 2010
  • A Through-Bulkhead Initiation Module(TBIM) works as the shock-wave generated by the detonation of donor explosive transmits to acceptor explosive. In order to estimate the minimum thickness of the bulkhead of TBIM, the structural stress of TBIM housing is calculated via modeling analysis, and which shows a sufficient margin in strength as the minimum thickness is bigger than 0.1 mm. The free surface velocity at the metal to explosive interface is measured using VISAR to determine the optimal thickness of bulkhead. The shock pressure is calculated from the measured free surface velocity, and the probability of TBIM with respect to the thickness of bulkhead is estimated by comparing the sensitivity of acceptor explosive with it.

Assessment of Blast-induced Vibration Using Dynamic Distinct Element Analysis (불연속체 동해석 기법을 이용한 발파진동 영향평가)

  • Park, Byung-Ki;Jeon, Seokwon;Park, Gwang-Jun;Do, Deog-Soo;Kim, Tae-Hoon;Jung, Du-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1389-1397
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced nitration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been increased recently in order to analyze the effect of the blast-Induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure corves estimated tv theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a dynamic distinct element analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast. Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced nitration and the stability of rock slope.

Structural and Thermal Characteristics of a High-Nitrogen Energetic Material: G(AHDNE)

  • Lu, Lei;Xu, Kangzhen;Zhang, Hang;Wang, Gang;Huang, Jie;Wang, Bozhou;Zhao, Fengqi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2352-2358
    • /
    • 2012
  • A high-nitrogen energetic salt, 1-amino-1-hydrazino-2,2-dinitroethylene guanidine salt [G(AHDNE)], was synthesized by reacting of 1-amino-1-hydrazino-2,2-dinitroethylene (AHDNE) and guanidine hydrochloride in sodium hydroxide aqueous solution. The theoretical investigation on G(AHDNE) was carried out by B3LYP/$6-311+G^*$ method. The thermal behaviors of G(AHDNE) were studied with DSC and TG-DTG methods, and the result presents an intense exothermic decomposition process. The enthalpy, apparent activation energy and pre-exponential constant of the process are $-1060J\;g^{-1}$, $148.7kJ\;mol^{-1}$ and $10^{15.90}s^{-1}$, respectively. The critical temperature of thermal explosion of G(AHDNE) is $152.63^{\circ}C$. The specific heat capacity of G(AHDNE) was studied with micro-DSC method and theoretical calculation method, and the molar heat capacity is $314.69J\;mol^{-1}K^{-1}$ at 298.15 K. Adiabatic time-to-explosion of G(AHDNE) was calculated to be a certain value between 60-72 s. The detonation velocity and detonation pressure were also estimated. G(AHDNE) presents good performances.

A Study on the Ground Vibration Reduction Characteristics of Air-Deck Blasting Method Using Paraffin Waxed Paper Tube (파라핀 지관 구조체를 활용한 Air-Deck 발파공법의 지반진동 저감특성에 관한 연구)

  • Gyeong-Jo, Min;Young-Keun, Kim;Chan-Hwi, Shin;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.32-45
    • /
    • 2023
  • Environmental regulations in Korea for blasting at industrial sites have conservative standards, which often result in reduced efficiency and cost-effectiveness due to the consideration of environmental regulations and public complaints. Therefore, there is a need for blasting methods that can reduce environmental damage while improving construction efficiency and cost-effectiveness. In this study, we analyzed the effects of the PA-Deck (Paraffin Air-Deck) blasting method, which is a kind of Air Decoupled Charge method in principle utilizing a paraffin-infused paper tube as an air gap, on reducing blasting hazards and improving blasting efficiency. The analysis also evaluated the effectiveness of newly applied equipment for collecting blasting vibration data, and derived the relationship between the explosion velocity and vibration velocity of explosives, and performed frequency analysis of the vertical component. The results of the blasting vibration velocity analysis showed that the Paraffin Waxed Paper Tube-based blasting method exhibited significantly lower vibration velocities compared to conventional blasting methods, and it was judged that more uniformly small-sized fragmented rocks were generated.

Analysis of surface interaction between filler and binder of PBXs (복합화약 원료들간의 표면특성 해석)

  • 심정섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.207-215
    • /
    • 2001
  • Plastic bonded explosive(PBX) is mainly composed of the nitramine-ploymer compositions. PBX is characterized by high velocity and pressure of detonation, low vulnerability and good thermal stability. Many important applications of PBX require the good adhesion between nitramine crystals and the binder. For PBXs as well as propellants, where good mechanical properties are of great importance, dewetting therefore must be prevented by strong adhesion between filler-binder. Adhesion depends on surface characteristics of filler and binder. In order to design for better adhesion, an understanding of the surface properties of explosive and binder is required. The surface free energies are calculated from contact angle values by the method of Kaelble. Critical surface tension of solids are calculated by Zisman plot. Critical surface tension is a useful parameter for characterizing the wettability of solid surface. In this study, HMX and 3 kinds of copolymers are selected, since they are widely used in many plastic bonded explosives. The technical objective of this investigation is to predict the interaction between filler and binder from their surface free energies.

  • PDF

The Research on Development of Flexible Linear Shaped Charge (유연성 선형 성형작약 개발에 관한 연구)

  • Park, Byung-Chan;Chang, Il-Ho;Lee, Woo-Jin;Jeon, Jin-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.378-387
    • /
    • 2009
  • The shaped charge consists of the cast or pressed explosive and the metal liner. The pressure formed in detonation wave is so high that the liner is collapsed and the jet of high temperature, pressure and velocity is produced. The jet penetrates the target. In this paper, the simulation for optimization of flexible linear shaped charge(FLSC) was carried out by AUTODYNE program. Based on the results of simulation, we made a prototype of FLSC and evaluated penetration performance, flexibility and its application. The test result of prototype was compared with that of simulation.