• Title/Summary/Keyword: deteriorated structures

Search Result 229, Processing Time 0.028 seconds

Performance assessment using the inverse analysis based a function approach of bridges repaired by ACM from incomplete dynamic data (불완전 동적 데이터로부터 복합신소재로 보강된 교량의 함수기반 역해석에 의한 성능 평가)

  • Lee, Sang-Youl;Noh, Myung-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.51-58
    • /
    • 2010
  • This work examines the identification of stiffness reduction in damaged reinforced concrete bridges under moving loads, and carries out the performance assessment after repairing using advanced composite materials. In particular, the change of stiffness in each element before and after repairing, based on the Microgenetic algorithm as an advanced inverse analysis, is described and discussed by using a modified bivariate Gaussian distribution function. The proposed method in the study is more feasible than the conventional element-based method from computation efficiency point of view. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the actual bridge modeled with a three-dimensional solid element. The numerical examples show that the proposed technique is a feasible and practical method which can inspect the complex distribution of deteriorated stiffness although there is a difference between actual bridge and numerical model as well as uncertain noise occurred in the measured data.

  • PDF

Environmental Characteristics and Nature-friendly Planning Strategies for an Urban Stream - The Case of Chuncheon's Gongji Stream - (도시하천의 환경특성과 친자연적 계획전략 - 춘천시 공지천을 대상으로 -)

  • Jo Hyun-Kil;Ahn Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.1-11
    • /
    • 2006
  • This study analyzed characteristics of natural and human environments in Chuncheon's Gongji stream, and suggested nature-friendly planning strategies for self-purification of water quality, biodiversity improvement and conservative waterfront recreation. The environmental analysis included streambed structures, floodplain soils, water quality, vegetation, wildlife, and human facilities. Natural colonization of vegetation for the middle section of the study stream was obstructed by a straightened concrete revetment of baseflow channel, and vehicle movement and concrete parking lots across the floodplain. These human disturbances also deteriorated the naturalness of the stream landscape and limited habitation of bird species. However, natural sedimented wetlands in half of the channel width for the lower section of the stream contributed to a desirable vegetational landscape and greater bird occurrence. Based on BOD measurements, water quality of the stream fell under class $II{\sim}III$ of the stream water-quality standard, but it was worse around sewage outlets due to incomplete sewage collection especially during the dry season. Dominant fish species included typical inhabitants of good water-quality streams that are tolerant of adverse habitat changes. Nature-friendly planning strategies were established based on analysis of the environmental characteristics. They focused on not merely spatial zoning and layout divided into four zones - preservation, partial preservation, conservation and use -, but close-to-nature channel revetment techniques, natural water-purification facilities, biotope diversification, and water-friendly recreation and circulation. Strategies pursued both renewal of stream naturalness and hydraulic stability of streamflow by minimizing transformation of natural channel micro-topography and biotope, and by reflecting natural traces of streambed structures such as revetment scour and sedimentation.

Cathodic Protection Characteristics and Effective Length of Protection Current of Concrete Pile using Zn-mesh Sacrificial Anode (아연 메쉬 희생양극을 이용한 콘크리트 파일의 음극방식 특성 및 방식전류 유효거리)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.773-776
    • /
    • 2008
  • The corrosion of steel in concrete is significant in marine environment. Marine bridges are readily deteriorated due to the exposure to marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100cm column specimens with eight of 10cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both 10$^{\circ}$C and 40$^{\circ}$C in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode

  • PDF

Performance Evaluation of Semi-Active Tuned Mass Damper for Elastic and Inelastic Seismic Response Control (준능동 동조질량감쇠기의 탄성 및 비탄성 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Chung, Lan;Woo, Sung-Sik;Cho, Seung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.47-56
    • /
    • 2007
  • In this study, tile performance of a passive tuned mass damper (TMD) and a semi-active tuned mass damper (STMD) was evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for the damped structures with a passive TMD, which was optimally designed using the frequency and damping ratio presented by previous study, and with a STMD proposed in this study. The displacement spectra confirm that STMD provides much better control performance than passive md with less stroke. Also, the robustness or the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of which hysteresis was described by Bouc-Wen model and the results indicated that the performance of the passive TMD of which design parameters were optimized for a elastic structure considerably deteriorated when the hysteretic portion or the structural responses increased, while the STMD showed about 15-40% more response reduction than the TMD.

Performance Evaluation of Repair Methods for RC structures by Accelerating Test in Combined Deterioration Chamber and Long-Term Field Exposure Test (복합열화촉진실험 및 장기현장폭로실험에 의한 RC구조물 보수공법의 보수성능평가)

  • Kwon Young-Jin;Kim Jae-Hwan;Han Byung-Chan;Jang Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.349-356
    • /
    • 2006
  • At present, the selecting system and analytic estimation criterion on repair materials and methods of the deteriorated RC structures have not yet been set up in domestic. Under these circumstances, deterioration such as shrinkage crack, corrosion of rebar has been often occurred after repair, and this finally results in too frequent repairs. In this study, three types of repair methods were experimentally investigated by the accelerating test in a combined deterioration chamber and long-term field exposure test. Three types of repair methods applied in this study belong to a group of polymer cement mortar, which is commonly used in repair works. According to the results of this study, durability of repair mortar layers and corrosion properties of recovered rebar could be investigated in short period by the accelerating test in a combined deterioration chamber, which can simulate the condition of repeated high-and-low temperature and repeated dry-and-wet environment, spraying chloride solution and emitting $CO_2$ gas. After 36 month long-term filed exposure test in the coastal area, harmful macro-cracks are observed in the polymer cement mortar layer of some repair methods. These crack are considered to result from drying shrinkage of polymer cement mortar. Also, after 36 month exposure, amount of corrosion area and weight loss of rebar are found to be different according to the types of repair methods.

Assessment of Flexural Strengthening Behavior Using the Stirrup-Cutting Near Surface Mounted(CNSM) CFRP strip (스터럽 절단 탄소섬유판 표면매립공법의 휨 보강 성능 평가)

  • Moon, Do Young;Oh, Hong Seob;Zi, Goang Seup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.102-112
    • /
    • 2012
  • Recently, the near surface mounted (NSM) FRP strengthening technique has been actively applied to deteriorated concrete structures for rehabilitation purposes. However, the use of this conventional NSM technique could be restricted due to the insufficient height or strength of the concrete cover. In this study, the stirrup-Cutting Near Surface Mounted(CNSM) technique was considered as an alternative, whereby NSM strips are placed at a deeper level, namely at the level of the main steel reinforcement. A flexural test of a concrete beam strengthened with CNSM technique was performed and the results were then compared to those for a concrete beam strengthened by the conventional NSM technique. The embedment length of the CFRP strips was varied in order to increase the effect of the anchoring depth of the NSM and CNSM CFRP strips in the beam specimens. From the results of the test, the beam with the CNSM CFRP strip showed typical structural behavior similar to that of the beam with the NSM CFRP strip. Moreover, there was no apparent structural degradation resulting from the stirrup partial-cutting. Consequently, the CNSM strengthening technique can be suitably utilized for extensively damaged concrete structures where it is difficult to apply the conventional NSM technique.

Reinforcement Effect of Reinforced Concrete Beams Strengthened with Grid-type Carbon Fiber Plastics (격자형 탄소섬유로 보강한 R/C보의 보강효과)

  • Jo, Byung-Wan;Tae, Ghi-Ho;Kwon, Oh-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.377-385
    • /
    • 2003
  • Flexural characteristics of the R.C beams strengthened with newly-developed grid-type carbon fiber plastics(CFRP-GRIDS) were investigated. The tests were conducted under the four-points load to the failure to investigate the strengthening effects of CFRP-GRIDS on the beams. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly, the appropriate area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

A Evaluation on the Field Application of Ductile Fiber Reinforced Cement Composites (고인성 섬유보강 시멘트 복합체의 현장 적용성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Park, Jung-Jun;Kang, Su-Tae;Kim, Sung-Wook;Park, Sung-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.941-944
    • /
    • 2008
  • Various ductile fiber reinforced cement composite(DFRCC) including large quantities of PVA fiber or steel fiber have been developed recently and studies to find applications in diverse domains are currently conducted actively. Regard to economical efficiency, DFRCC becomes competitive when applied as special elements and repair material with small quantities rather than the casting of large volume for the main body of structures in field. The authors have developed FRP-DFRCC composite slab for bridges and a wet spraying repair technique using DFRCC. In case of the application on FRP-DFRCC composite slab, it was found that there was no problems the structure and durability of it after passed 3 months. And in case of the application on the application of the deteriorated sewage box that passed 20 years, it was found that there was no difference the repair performance between domestic PVA fiber and the Japan. Therefore, DFRCC using PVA fiber, the concrete structures can be increased to performance and secured the economical efficiency.

  • PDF

Cathodic Protection of Reinforced Concrete Slab with Zn-Mesh in Marine Environment (해양환경 중 Zn-mesh를 적용한 콘크리트 슬랩의 음극방식 특성)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1065-1068
    • /
    • 2008
  • Marine bridges are readily deteriorated due to the exposure to marine environment. The concrete deterioration occurred by corrosion of steel in concrete is mainly relevant to chloride in seawater. Chloride ions penetrate through porous concrete, and then reach to the reinforcing steel, and finally corroded them. The corrosion by-products(rusts) increase the volume as much as 6 to 10 times of origin steel. this creates expanding pressure and tensile stress, which cause the structures cracking and spalling. Sometimes the rebar corrosion is accelerated, and then collapsed catastrophically. In order to prevent corrosion damage, it is important to understand well regarding the reason of concrete corrosion, the quantification of its damage, and protection method/system to stop or to mitigate the corrosion. In this study, slab specimens were fabricated to evaluate the effect of cathodic protection which was simulated to marine bridges, and/or port structures. Zn-mesh sacrificial anode has been applied as a chathodic protection system and accelerated test conditions, i.e. temperature and salt concentration have been used in this study.

  • PDF

Bonding Properties of Steel-reinforced Polymer Cement Mortar Evaluated by Pull-off Test and FEM Modeling (폴리머 시멘트 모르타르의 철근부착력 평가를 위한 인발실험과 모델링)

  • Park, Dong-Cheon;Yoneda, Nobutosi;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • Chloride attack to reinforced concrete structures located in seaside can cause a serious problem of durability and maintenance during the service life. Corrosion of reinforced steel bars in concrete decreases the bond strength and finally causes the detachment of concrete cover. Polymer cement mortar is usually adopted to repair the deteriorated RC structures because of its strong bonding property. The recovered load-carrying capacity after the repair was simulated by non-linear FEM analysis. The properties of concrete, repairing materials, bonding materials and reinforced bar were used as input data. Four types of redispersible polymer powders were used as components of polymer cement mortar. Pull-off tests were carried out to examine the bond properties such as rigidity and strength. Effects of a corrosion inhibitor and the loss of reinforced bars due to the corrosion were also considered in this study. FEM modeling and analysis were conducted to propose the universal model. Physical bonding in the relationship between repair materials and steel reinforced bar is more dominant than chemical bonding.