• Title/Summary/Keyword: deteriorated pavement

검색결과 33건 처리시간 0.022초

현장가열재생 아스팔트 포장의 현재 미국 내의 적용 현황 연구: 문헌조사 (Investigation of Current Practice on Hot In Place Recycling (HIR) in USA: Literature Review)

  • 임정혁;조성환;황성도
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.73-89
    • /
    • 2014
  • PURPOSES : The objective of this study is to investigate the current state of the practice, examining the steps in the process recommended by various agencies and the Asphalt Recycling and Reclaiming Association (ARRA)-namely mix design, structural design, structural capacity evaluation, and material characterization-in order to better understand the implications of hot in-place recycling (HIR). METHODS : In addition, the current practice of state departments of transportation (DOTs) is here reviewed with the purpose of learning from successful past experiences so as to forestall any difficulties that may emerge under similar circumstances. Also, HIR benefits, including reduced costs, improved construction processes, and environmental friendliness are presented, as well as advantages and disadvantages of HIR application. RESULTS : Most of the United States highway system is now deteriorating so that rehabilitation or reconstruction techniques are required for the most distressed roads, taking into account ways to increase the effectiveness of existing budgets. Several options are available in rehabilitating distressed roads, and the choice among these depends on many factors, including pavement distress condition, funding, and design life. Among these techniques, Hot In-Place Recycling (HIR) has emerged as a cost-effective treatment for deteriorated pavements, and has been proven an effective long-term strategy for pavement rehabilitation.

폐콘크리트분말 혼합 흙도로 포장용 모르타르의 압축강도 특성 (Properties of Compressive Strength of Mortar Mixed with WCP for Soil Pavement)

  • 문한영;최연왕;송용규;문대중;신화철;정철희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.537-540
    • /
    • 2004
  • Recently, for industrial development period, concrete structures in domestics have been increased. They were deteriorated by attack of carbonation, freeze-thaw and corrosion etc. In hence they were demolished and reconstructed, resulted in waste concrete particles. In this paper, waste concrete particles (WCP) by product from different crushing and selecting process were used in soil cement-based pavement in the various recycling. For using WCP in soil cement-based pavement, the Qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 Mpa and then optimum mixing ratio of chemical solidification agent were decided in the range of $1.5\~3.0\%$ in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and $20\%$ in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

  • PDF

효율적인 고속도로 포장유지관리를 위한 유지관리프로세스 개선방안 기초연구 (Basic Study of the Improvement of Maintenance Process for Efficient Highway Pavement Management)

  • 박종범;이용준;이민재
    • 한국산학기술학회논문지
    • /
    • 제15권11호
    • /
    • pp.6932-6942
    • /
    • 2014
  • 고속도로는 국가발전의 원동력인 사회기반시설물 중의 하나로 사회발전에 중요한 역할을 담당하고 있으며 고속도로 연장도 계속적으로 증가되고 있으며, 수송의 고속성 뿐만 아니라 안전성, 저공해성, 쾌적성 등 한층 높은 수준의 서비스가 요구되고 있다. 그러나 한정된 고속도로 유지보수 예산으로 보수가 지연되어 포장상태는 계속적으로 악화되고 있는 실정이다. 따라서 본 연구에서는 기존 문헌 및 포장유지보수프로세스 문제점 고찰을 통하여 최적의 고속도로 포장유지보수 관리 체계를 확립하고 개선된 고속도로 포장유지보수 업무 프로세스를 제시하여. 한정된 예산 내에서 최소 비용으로 최대 서비스 제공이 가능한 장수명 포장관리 체계의 확립과 포장의 내구수명을 연장 할 수 있는 현실적으로 실무에 적용이 가능한 효율적인 고속도로 포장유지관리가 가능토록 하고자 한다. 본 연구에서 제시한 개선된 유지보수프로세스를 검증한 결과, 기존 방법보다 공사일수 감소, 공사비 및 유지관리비 절감의 효과가 있었다.

합성섬유보강 콘크리트의 내구특성 (Durability of Concrete Reinforced by Polypropylene Fivers)

  • 박제선;정영화;윤경구;이주형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.449-454
    • /
    • 1999
  • Pavement concrete subjected to severe environmental condition may be vulnerable to frost attack practically where de-icing chemicals are used. This study focused on the investigation of durability characteristics of pavement concrete incorporation polypropylene fibers and application feasibility of these into the pavements of local roads and highway. A series of labortory tests were performed with main experimental variable such as fiber types, fiber contents. and type of concrete mix. The test of compressive strength was executed as primary tests, before the durability tests such as a scaling resistance were performed. De-icing salt resistance test was progressed by recycling freeze and thaw in the presence of a 4% calcium chloride solution. The deteriorated surfaces were rated by visual inspection and the loss weight were measured at every 5 cycles.

  • PDF

시멘트 콘크리트 포장체 줄눈부의 거동해석 (Analysis of Joint Behavior in Cement Concrete Pavements)

  • 변근주;이상민;임갑주;한봉완
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.1-6
    • /
    • 1990
  • Joints are provided in cement concrete pavements to control transverse and longitudinal cracking that occur due to restrained deformations caused by moisture and temperature variations in the slab. But the construction of joints reduces the load-carrying capacity of the pavement at the joints, and pavements have beem deteriorated by cracks at the slab edges along the joints due to traffic loads. Therefore, it is important to analyze the behavior of joints accurately in the design of cement concrete pavements. In this study, the mechanical behavior of cement concrete pavement slabs is analyzed by the plate-finite element model, and Winkler foundation model is adopted to analyze the subgrades. The load transfer mechanism of joints are composed of dowel action, aggregate interlocking, and tied-key action, and the analytical program is developed using these joint models.

  • PDF

재생골재 활용 철근콘크리트포장 내 철근의 부착특성에 대한 연구 (A Study on the Bond Stress of Rebar in Reinforced Concrete Pavement using Recycled Aggregate)

  • 김낙석;김광태;전찬기;전중규
    • 한국방재학회 논문집
    • /
    • 제5권1호
    • /
    • pp.77-84
    • /
    • 2005
  • 콘크리트 구조물의 성능저하, 노후화 및 용도 변경 등으로 구조물을 해체할 경우가 증가하면서 발생되는 폐콘크리트량이 급증하고 있는 추세이지만, 거의 대부분이 단순 매립용 재료로 사용되고 있다. 우리나라와 같이 부존자원이 부족한 나라에서 폐기되는 콘크리트를 포장 콘크리트용 골재로 재활용할 경우 콘크리트용 천연골재의 부족 현상 극본, 자원절약 및 환경보존 등에 크게 기여할 것으로 기대된다. 본 연구에서는 실제 구조물에 사용된 콘크리트를 해체하면서 발생한 폐콘크리트를 파쇄하여 제조한 재생골재의 혼합율을 각각 5단계로 변화시켜 제조한 재생 골재를 포장 콘크리트용 골재로 활용하기 위하여 실시한 실험결과에 대하여 고찰하였다.

줄눈콘크리트포장의 하중응력분포 해석 (Stress Distribution Analysis of Jointed Concrete Pavements)

  • 박제선;이주형;김태경;윤경구
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.363-370
    • /
    • 1998
  • This study focused on the development of an alternative stress estimation procedure to instantly calculate the critical stresses bonded concrete pavement. Closed form analysis is commonly used to analyze pavement structures. This type of analysis assumes linearelastic material properties and static loading conditions. The well-known ILLI-SLAB finite element program was used for the analysis. Bonded concrete overlay analyzed the stress distribution, behavior and load carrying capacity under track load is made evaluation standard of bonded concrete overlay. In the study, the following results were derived ; The properties of strength is that compress and 3-point bending strength of existing pavement is deteriorated with $184kg/cm^2$, $59kg/cm^2$ but compress and splitting tensile strength of overlay is satisfied with $465kg/cm^2$, $45kg/cm^2$. Load transfers is happen at adjacent slab by interlocking under track load. The stress distribution under interior, corner and edge load is described high loading position surrounding then loading position.

  • PDF

초속경라텍스개질콘크리트의 초기수축 (Early-Age Shrinkage of Very-Early Strength Latex Modified Concrete)

  • 이정호;최판길;최승식;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.269-272
    • /
    • 2004
  • After concrete casts, temperature decent and shrinkage bring volume changes of concrete pavement. Microcracking and cracking in concrete pavement are caused by these volume changes. As a result, durability of concrete pavement is deteriorated. Recently, Very-Early Strength Latex Modified concrete(below:VESLMC) from the beginning of High-Way is used as urgent repair material for bridge deck. The advantage of VESLMC is that compressive and flexural strength at 3 hours age are 4.5MPa and 21MPa respectively. It allows the traffic to open in 3 hours. But, this material has the problem which is early-age shrinkage cracking caused by water self-dissipation with rapid hydration reaction and water evaporation with body dry. Unfortunately, until now, the research about early-age shrinkage of VESLMC leaves something to be desired. Therefore, the purpose of this study is to present the early-age shrinkage of VESLMC respect to latex contents and shrinkage ratio to maximum length change that can help field engineers' skill. Latex contents of 0, 5, 10, 15, $20\%$ in standard of same workability in VESLMC are selected by experimental variables. After initial set, shrinkage value was measured with 10mm LVDT for 3 days. The results of maximum shrinkage ratio were 0.019, 0.017, 0.023, $0.027\%$ respectively.

  • PDF

침투형 Nano-Coat를 이용한 콘크리트 열화 방지 적용성 평가 (Evaluation of Applicability of penetrating-type Nano-Coat for Preventing Deterioration of Concrete)

  • 이준희;김조순;심양모;이승우
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.7-15
    • /
    • 2017
  • PURPOSES : Infiltration of moisture, polluted material, and deicer into concrete, accompanied by freeze and thaw can cause significant deterioration of concrete pavement. In order to protect concrete from deterioration, it is necessary to prevent the infiltration of these concrete external materials. The moisture-repellent agent, which is a surface treatment and maintenance material added to concrete structures to render them water resistant, has advantages such as prevention of water infiltration and security against air permeation. Nano-coat, which is referred to as silicon hydride, is typically used as a moisture-repellent agent. Therefore, in this study, an attempt is made to use penetration-type Nano-coat as an alternative in order to evaluate its applicability through environmental resistance tests. METHODS : This study aimed to evaluate the applicability of penetration-type Nano-coat, which can provide water repellency to concrete, in concrete pavements, through various environmental resistance tests such as freezing and thawing resistance, chloride ion penetration resistance, and surface scaling resistance tests. The applicability of penetration-type Nano-coat was demonstrated based on the specification of KS F 2711, KS F 2456, and ASTM C 672. RESULTS :In the case of penetration-type Nano-coat applied on sound concrete, an increase in concrete durability was demonstrated by the negligible chloride ion penetrability and the absence of scaling, as revealed by visual observation of the surface, after 50 cycles of scaling resistance test. In addition, test result of the application of penetration-type Nano-coat on deteriorated concrete established that concrete surface pretreated by grinding provided improved durability than non-treated concrete. CONCLUSIONS :This study indicates that penetration-type Nano-coat is applicable as an effective alternative, to increase the durability of concrete structures. In addition, it was known that pretreatment of deteriorated concrete surface, such as grinding, is required to improve the long-term performance of concrete pavement.

다층구조확산을 고려한 제설제에 노출된 콘크리트의 염화물 해석 (Analysis for Chloride Penetration in Concrete under Deicing Agent using Multi Layer Diffusion)

  • 서지석;권성준
    • 한국콘텐츠학회논문지
    • /
    • 제16권4호
    • /
    • pp.114-122
    • /
    • 2016
  • 콘크리트는 경제적이며 고내구성 건설재료이지만, 염해에 노출된 경우 매립된 철근의 부식으로 인해 내구성에 대한 문제가 발생한다. 최근 들어 동절기에 제설제가 많이 사용되고 있는데, 제설제의 사용은 콘크리트 표면에 미세균열과 박리를 증가시키고 용해된 제설제는 매립된 철근의 부식을 야기한다. 기존의 염화물 지배방정식인 Fick's 2nd Law의 해석기법은 표면이 열화된 콘크리트의 염해특성을 평가하지 못하므로 이에 대한 고려가 필요하다. 본 연구에서는 콘크리트 다층구조 확산 모델과 시간의존성 염화물 확산을 이용하여 제설제에 노출된 콘크리트의 염화물 해석기법을 제안하였다. 이를 위해 18년 경과된 콘크리트 도로교의 염해실태를 분석하였으며, 역해석을 통하여 표면열화깊이 및 열화된 콘크리트 층의 증가된 염화물 확산성을 평가하였다. 제안된 기법은 30MPa 콘크리트에서 12.5~15.0mm 열화깊이와 2배 증가된 열화층의 염화물 확산성을 나타내었다. 본 해석기법은 표면열화 및 표면 강화 등 2개의 다른 확산성을 가진 콘크리트의 염화물 거동을 평가하는데 효과적으로 적용될 수 있다.