• 제목/요약/키워드: detergent additive

검색결과 38건 처리시간 0.02초

Fermentation characteristics and microbial community composition of wet brewer's grains and corn stover mixed silage prepared with cellulase and lactic acid bacteria supplementation

  • Guoqiang Zhao;Hao Wu;Yangyuan Li;Li Li;Jiajun He;Xinjian Yang;Xiangxue Xie
    • Animal Bioscience
    • /
    • 제37권1호
    • /
    • pp.84-94
    • /
    • 2024
  • Objective: The objective of this study was to investigate how cellulase or/and lactic acid bacteria (LAB) affected the fermentation characteristic and microbial community in wet brewer's grains (WBG) and corn stover (CS) mixed silage. Methods: The WBG was mixed thoroughly with the CS at 7:3 (w/w). Four treatment groups were studied: i) CON, no additives; ii) CEL, added cellulase (120 U/g fresh matter [FM]), iii) LAB, added LAB (2×106 cfu/g FM), and iv) CLA, added cellulase (120 U/g FM) and LAB (2×106 cfu/g FM). Results: All additive-treated groups showed higher fermentation quality over the 30 d ensiling period. As these groups exhibited higher (p<0.05) LAB counts and lactic acid (LA) content, along with lower pH value and ammonia-nitrogen (NH3-N) content than the control. Specifically, cellulase-treated groups (CEL and CLA) showed lower (p<0.05) neutral detergent fiber and acid detergent fiber contents than other groups. All additives increased the abundance of beneficial bacteria (Firmicutes, Lactiplantibacillus, and Limosilactobacillus) while they decreased abundance of Proteobacteria and microbial diversity as well. Conclusion: The combined application of cellulase and LAB could effectively improve the fermentation quality and microbial community of the WBG and CS mixed silage.

Nitrogen Retention and Chemical Composition of Urea Treated Wheat Straw Ensiled with Organic Acids or Fermentable Carbohydrates

  • Sarwar, M.;Khan, M. Ajmal;Nisa, Mahr-un
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권11호
    • /
    • pp.1583-1591
    • /
    • 2003
  • The influence of varying levels of urea and additives on nitrogen (N) retention and chemical composition of wheat straw was studied. The wheat straw was treated with 4, 6 and 8% urea and ensiled with 1.5, 2 and 2.5% of acetic or formic acid and 2, 4 and 6% of corn steep liquor (CSL) or acidified molasses for 15 days. The N content of wheat straw was significantly different across all treatments. The N content of urea treated wheat straw was increased with the increasing level of urea. The N content was higher in urea treated wheat straw ensiled with acetic or formic acid as compared to urea treated wheat straw ensiled without these organic acids. The N content of urea treated wheat straw was further enhanced when it was ensiled with CSL or acidified molasses. This effect was significant across all levels of urea used to treat the wheat straw. Nitrogen retention in urea treated wheat straw was decreased linearly as the urea level was increased to treat the wheat straw. The N content was increased linearly when higher levels of CSL or acidified molasses were used to ensile the urea treated wheat straw. Most of the N in urea treated wheat straw was held as neutral detergent insoluble N (NDIN). The NDIN content was increased linearly with the increasing levels of urea and additives. The neutral detergent fiber (NDF) contents were higher in urea treated wheat straw ensiled with acetic or formic acid as compared to urea treated wheat straw ensiled without additive. The NDF content further increased in urea treated wheat straw ensiled with CSL and acidified molasses. The entire increase in NDF content was because of fiber bound N. The hemicellulose content of urea treated wheat straw ensiled with CSL or acidified molasses was higher as compared to urea treated wheat straw ensiled with acetic or formic acid. The acid detergent fiber content of urea treated wheat straw ensiled with or without additives remained statistically non-significant. The cellulose contents of wheat straw was linearly reduced when urea level was increased from 4 to 6 and 8% to treat the wheat straw. This effect was further enhanced when urea treated wheat straw was ensiled with different additives. The results of the present study indicated that fermentable carbohydrates might improve the Nitrogen retention and bring the favorable changes in physiochemical nature of wheat straw. However, biological evaluation of urea treated wheat straw ensiled with fermentable carbohydrates is required.

야초 사일리지의 품질향상에 관한 연구 I. 칡 사일리지 제조에 있어서 물, 전분, 포도당 첨가효과 (Studies on the Quality of Silage from Domeestic Herbage I. Effects of water , corn starch and glucose as additives on Kudzu ( Puerarie thunbergii Bentham ) silage)

  • 김대진;임완
    • 한국초지조사료학회지
    • /
    • 제7권3호
    • /
    • pp.162-167
    • /
    • 1987
  • 本 실험은 등과야초인 칡에 당분을 첨가한 사일리지를 조제하여 사료배치를 향상시키기 위하여 실시하였다.칡은 줄기와 잎을 2.0~2.5cm로 절단하여 2l들이 플라스틱 용기에 물8% 첨가한 사일리지, 물8%와 전분3%첨가한 사일리지, 물8%와 포도당3% 첨가한 사일리지 그리고 아무것도 첨가하지 않은 칡 사일리지를 조제하였으며 이들과 옥수수 사일리지를 비교하였다. 사일리지의 발표품질인 유기산과 조직성분의 특성(NOF, AOF, AOL)과 pepsin-cellulase 에 의한 건물消化率(OMO)을 예정하였던 바 결과는 다음과 같이 要約된다. 1. 모든 처리의 칡 사일리지는 10% 이상의 무게 손실이었다. 2. pH에 있어서 포도당첨가 칡 사일리지가3.80, 전분첨가 칡 사일리지가 4.04, 대조구의 칡 사일리지가 4.57 그리고 물만을 첨가한 칡 사일리지는 5.34 순위로 높았다. 3. 유산함량에 있어서는 옥수수 사일리지(1.93 %), 포도당첨가 칡 사일리지 (1.89%), 전분첨가 칡 사일리지(1. 31 %), 대조구의 칡 사일리지 (0.57%), 그리고 물만을 첨가한 칡 사일리지(0.44%) 순위로 낮았다. 4. Fliegs 평점은 대조구의 칡 사일리지 22, 물첨가만의 칡 사일리지가 60, 전분 첨가한 칡 사일리지가 87이었으며, 옥수수 사일리지와 칡 사일리지는 각각 100이었다. 5. 칡 사일리지의 조단白質含量은 13.50-15.59%로서 처리간 유의성이 없었다 (P>0.05). 6. 포도당과 전분을 첨가한 힘 사열리지의 NO-F, ADF, ADL含量이 다른 處리구에 비해 유의적으로 감소되었다. (P< O. 05). 7. 포도당과 전분을 첨가한 칡 사일리지의 건물消化率은 다른 처리에 비하여 크게 增加하였다(P <0.05). 8. pH (X)와 총산(Y) 과의는 Y=-0.70X +4.96 (P< 0.01), 유산(X)과 세포내용울(Y) 과는 Y=10.61X+25.84 (P< 0.05). 그리고 리그닌 (X)과 건물소화율(Y)과는 Y=-2.48X +74.35 (P<0.05)이였다.

  • PDF

Altering undigested neutral detergent fiber through additives applied in corn, whole barley crop, and alfalfa silages, and its effect on performance of lactating Holstein dairy cows

  • Hosseini, Seyed Mohsen;Mesgaran, Mohsen Danesh;Vakili, Ali Reza;Naserian, Abbas Ali;Khafipour, Ehsan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권3호
    • /
    • pp.375-386
    • /
    • 2019
  • Objective: We hypothesized that silage additives may alter the undigested neutral detergent fiber (uNDF) content through ensiling. Therefore, urea and formic acid were applied to corn, whole barley crop (WBC) and alfalfa to change uNDF content of the ensiled forages. Methods: Six experimental diets at two groups of high uNDF (untreated corn and alfalfa silages [CSAS] and untreated whole barley and alfalfa silages [BSAS]) and low uNDF (urea-treated corn silage+untreated alfalfa silage [$CS_UAS$], urea-treated whole barley silage+untreated alfalfa silage [$BS_UAS$], untreated corn silage+formic acid-treated alfalfa silage [$CSAS_F$], and untreated whole barley silage+formic acid-treated alfalfa silage [$BSAS_F$]), were allocated to thirty-six multiparous lactating Holstein dairy cows. Results: The untreated silages were higher in uNDF than additive treated silages, but the uNDF concentrations among silages were variable (corn silage0.05). Milk yield tended to increase in the cows fed high uNDF diets than those fed low uNDF (p = 0.10). The cows fed diet based on urea-treated corn silage had higher milk yield than those fed other silages (p = 0.05). The substitution of corn silage with the WBC silage tended to decrease milk production (p = 0.07). Changing the physical source of NDF supply and the uNDF content from the corn silage to the WBC silage caused a significant increase in ruminal $NH_3-N$ concentration, milk urea-N and fat yield (p<0.05). The cows fed diets based on WBC silage experienced greater rumination time than the cows fed corn silage (p<0.05). Conclusion: Administering additives to silages to reduce uNDF may improve the performance of Holstein dairy cows.

Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage

  • Wan, Jiang Chun;Xie, Kai Yun;Wang, Yu Xiang;Liu, Li;Yu, Zhu;Wang, Bing
    • Animal Bioscience
    • /
    • 제34권1호
    • /
    • pp.56-65
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of molasses and Lactobacillus plantarum on the ensiling quality and in vitro rumen fermentation of sudangrass silage prepared with or without wilting. Methods: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), Lactobacillus plantarum (LP), or molasses + Lactobacillus plantarum (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and in vitro characteristics. Results: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The in vitro gas production, in vitro dry matter digestibility, in vitro crude protein digestibility, and in vitro acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of in vitro gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control. Conclusion: Wilting and supplementation with molasses and Lactobacillus plantarum had the ability to improve the ensiling quality and in vitro nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and in vitro ruminal fermentation characteristics.

Essential oil mixture on rumen fermentation and microbial community - an in vitro study

  • Kim, Hanbeen;Jung, Eunsang;Lee, Hyo Gun;Kim, Byeongwoo;Cho, Seongkeun;Lee, Seyoung;Kwon, Inhyuk;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권6호
    • /
    • pp.808-814
    • /
    • 2019
  • Objective: The objective of this study was to investigate the effects of essential oil mixture (EOM) supplementation on rumen fermentation characteristics and microbial changes in an in vitro. Methods: Three experimental treatments were used: control (CON, no additive), EOM 0.1 (supplementation of 1 g EOM/kg of substrate), and EOM 0.2 (supplementation of 2 g EOM/kg of substrate). An in vitro fermentation experiment was carried out using strained rumen fluid for 12 and 24 h incubation periods. At each time point, in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (IVNDFD), pH, ammonia nitrogen ($NH_3-N$), and volatile fatty acid (VFA) concentrations, and relative microbial diversity were estimated. Results: After 24 h incubation, treatments involving EOM supplementation led to significantly higher IVDMD (treatments and quadratic effect; p = 0.019 and 0.008) and IVNDFD (linear effect; p = 0.068) than did the CON treatment. The EOM 0.2 supplementation group had the highest $NH_3-N$ concentration (treatments; p = 0.032). Both EOM supplementations did not affect total VFA concentration and the proportion of individual VFAs; however, total VFA tended to increase in EOM supplementation groups, after 12 h incubation (linear; p = 0.071). Relative protozoa abundance significantly increased following EOM supplementation (treatments, p<0.001). Selenomonas ruminantium and Ruminococcus albus (treatments; p<0.001 and p = 0.005), abundance was higher in the EOM 0.1 treatment group than in CON. The abundance of Butyrivibrio fibrisolvens, fungi and Ruminococcus flavefaciens (treatments; p<0.001, p<0.001, and p = 0.005) was higher following EOM 0.2 treatment. Conclusion: The addition of newly developed EOM increased IVDMD, IVNDFD, and tended to increase total VFA indicating that it may be used as a feed additive to improve rumen fermentation by modulating rumen microbial communities. Further studies would be required to investigate the detailed metabolic mechanism underlying the effects of EOM supplementation.

세탁세제 첨가용 효소 개발을 위한 남극 해양세균 유래 저온성 단백질분해효소의 특성 연구 (Characterization of an Antarctic alkaline protease, a cold-active enzyme for laundry detergents)

  • 박하주;한세종;임정한;김덕규
    • 미생물학회지
    • /
    • 제54권1호
    • /
    • pp.60-68
    • /
    • 2018
  • 남극 해양세균 Pseudoalteromonas arctica PAMC 21717로부터 저온활성 alkaline protease (Pro21717)를 부분정제하였다. Pro21717 효소 추출액은 skim milk를 포함하는 zymogram gel 상에서 약 37 kDa (낮은 활성)과 74 kDa (높은 활성) 위치에서 두 개의 뚜렷한 투명밴드(clear zone)를 형성하였다. 단백질 분해활성을 나타내는 두 개의 효소단백질은 동일한 N-말단 아미노산 서열을 가지고 있었으며, 하나의 유전자에서 발현된 미성숙 단백질(precursor)이 37 kDa 크기의 단백질분해효소로 성숙화과정을 거친 후 74 kDa 크기로 이량체화됨으로써 좀 더 높은 활성을 가지는 것으로 판단된다. Pro21717은 $0-40^{\circ}C$ (최고활성 온도 $40^{\circ}C$) 온도 범위에서 단백질분해활성을 나타내었고 pH 5.0-10.0 (최적 pH 9.0) 범위에서 효소활성을 유지하였다. 주목할만한 특성으로써, Pro21717은 $40^{\circ}C$에서의 최고 효소활성(100%) 대비, $0^{\circ}C$$10^{\circ}C$에서 각각 30%와 45%의 높은 저온활성을 나타내었다. 또한 다양한 합성 펩타이드류에 대해 분해활성을 나타내는 Pro21717은 $Cu^{2+}$에 의해 활성이 증가하였으며, 시판용 세탁세제(commercial detergent formulation)에 포함되어 있는 다양한 종류의 계면활성제, 화학성분, 금속이온에 의해 활성이 감소되지 않았다. 전반적으로 저온활성 Pro21717은 글로벌 상업용효소 생산회사 Novozymes이 시판하고 있는 중온성 효소 Subtilisin Carlsberg (trademark Alcalase)에 버금가는 유용한 효소학적 특성이 있는 동시에 상대적으로 더 높은 저온활성을 보여주고 있다. 위의 실험결과들은, Pro21717은 $15^{\circ}C$ 이하의 차가운 수돗물에서도 세척력을 유지하는 새로운 세탁세제 효소첨가제로서의 개발 가능성을 보여주고 있다.

Development of a new lactic acid bacterial inoculant for fresh rice straw silage

  • Kim, Jong Geun;Ham, Jun Sang;Li, Yu Wei;Park, Hyung Soo;Huh, Chul-Sung;Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.950-956
    • /
    • 2017
  • Objective: Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Methods: Lactic acid bacteria (LAB) from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821) were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841), two commercial inoculants (HM/F and P1132) and no additive as a control. Results: After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p<0.05). Acidity (pH) was lowest, and lactic acid highest, in 1821-treated silage (p<0.05). The $NH_3-N$ content decreased significantly in inoculant-treated silage (p<0.05) and the $NH_3-N$ content in 1821-treated silage was lowest among the treatments. The dry matter (DM) content of the control silage was lower than that of fresh rice straw (p<0.05), while that of the 1841- and p1174-inoculant-treated silages was significantly higher than that of HM/F-treated silage. Microbial additives did not have any significant (p>0.05) effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP) content and in vitro DM digestibility (IVDMD) increased after inoculation of LAB 1821 (p<0.05). Conclusion: LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, $NH_3-N$, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

국내 식품 중 유기인계 잔류농약의 위해성 평가 (Reduction Factors and Risk Assessment of Organophosphorus Pesticides in Korean Foods)

  • 이미경;이서래
    • 한국식품과학회지
    • /
    • 제29권2호
    • /
    • pp.240-248
    • /
    • 1997
  • 유기인계 농약의 조리 및 가공에 의한 제거율 데이타를 총정리한 결과 식품의 수세에 의해서 평균 45%, 세제에 의한 세척에 의해 56%, 과일의 껍질 벗기기에 의해 91%, 채소의 데치기 및 삶기에 의해 51%, 곡류의 도정에 의해 76%, 가공에 의해 60%가 제거되었다. 한국인의 식품 섭취량과 잔류허용기준에 의하여 농약의 이론적 최대섭취량(TMDI)을 산정한 결과, 조사된 11가지 농약중 4가지가 1인당 1일 섭취허용량(ADI)을 초과하는 것으로 나타났다. 식품 섭취량과 잔류농약 모니터링 데이터에 의하여 추정섭취량(EDI)을 산정한 결과, 유기인계 농약의 독성을 부가적(additive effect)인 것으로 가정한 ADI 대비율은 17.2%로 나타났다. 개별 농약성분의 ADI 대비율은 diazinon 6.1%, fenthion 5.8%, fenitrotion 3.3%로 나타났고 그 이외의 농약은 매우 낮게 나타났다. EDI에 감소계수를 감안한 결과 유기인계 농약성분은 조리 및 가공에 의해 50% 이상이 제거되는 것으로 판단된다. 결론적으로 유기인계 농약 전체에 대해 한국인은 ADI의 23% 수준에서 노출되고 있으며 이러한 수준은 그 위해성이 문제되지는 않지만 체계적인 위해평가를 시도해야 할 때라고 판단된다.

  • PDF

Evaluating fermentation quality, in vitro digestibility and aerobic stability of a total mixed ration ensiled with different additives on Tibet plateau

  • Dong, Zhihao;Wang, Siran;Zhao, Jie;Li, Junfeng;Liu, Qinhua;Bao, Yuhong;Shao, Tao
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.223-232
    • /
    • 2021
  • Objective: To investigate the improvement in utilization efficiency of total mixed ration (TMR) on Tibetan plateau, TMR were ensiled with different additives. Methods: A total of 150 experimental silos were prepared in a completely randomized design to evaluate the six treatments: i) control (without additive), ii) Lactobacillus buchneri (L. buchneri), iii) acetic acid, iv) propionic acid, v) 1,2-propanediol; and vi) 1-propanol. After 90 days of ensiling, silos were opened for fermentation quality and in vitro analysis, and then subjected to an aerobic stability test for 14 days. Results: Treating with L. buchneri, acetic acid, 1,2-propanediol and 1-propanol decreased propionic acid contents and yeast number, whereas increased (p<0.05) pH, acetic acid and ethanol contents in the fermented TMR. Despite increased dry matter (DM) loss in the TMRs treated with 1,2-propanediol and 1-pronanol, additives did not affect (p>0.05) all in vitro parameters including gas production at 24 h (GP24), GP rate constant, potential GP, in vitro DM digestibility and in vitro neutral detergent fibre digestibility. All additives improved the aerobic stability of ensiled TMR to different extents. Specially, aerobic stability of the ensiled TMR were substantially improved by L. buchneri, acetic acid, 1,2-propanediol, and 1-propanol, indicated by stable pH and lactic acid content during the aerobic stability test. Conclusion: L. buchneri, acetic acid, 1,2-propanediol, and 1-propanol had no adverse effect on in vitro digestibility, while ensiling TMR with the additives produced more acetic acid and ethanol, subsequently resulting in improvement of aerobic stability. There is a potential for some fermentation boosting additives to enhance aerobic stability of fermented TMR on Tibetan plateau.