• Title/Summary/Keyword: detector size effect

Search Result 63, Processing Time 0.028 seconds

Size-of-source Effect and Self-radiation Effect of an Infrared Radiation Thermometer (적외선 복사온도계의 복사원 크기효과 및 자기복사효과)

  • Yoo, Yong-Shim;Kim, Bong-Hwak;Park, Chul-Woung;Park, Seung-Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.133-138
    • /
    • 2010
  • All radiation thermometers have a size-of-source effect (SSE) and a self-radiation effect (SRE). The SSE,defined as dependence of the detector signal of a radiation thermometer on the diameter of a source, is critically dependent on the wavelength since diffraction is the main cause. In this paper, we have measured the SSE and the SRE of TRT2 (Transfer Radiation Thermometer 2, HEITRONICS) widely used as a transfer standard in low and middle temperature range. At $300^{\circ}C$, The radiation temperature difference between the 60 mm diameter blackbody and 10 mm diameter blackbody due to the SSE was estimated to be $3.5^{\circ}C$ in low temperature mode ($8-14\;{\mu}m$) and $0.5^{\circ}C$ in middle temperature mode ($3.9\;{\mu}m$). In addition, the measured radiation temperature difference of the blackbody due to the SRE was found to be 110 mK when the body temperature change of TRT2 was set at $2.6^{\circ}C$.

Development of a Virtual Frisch-Grid CZT Detector Based on the Array Structure

  • Kim, Younghak;Lee, Wonho
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Background: Cadmium zinc telluride (CZT) is a promising material because of a high detection efficiency, good energy resolution, and operability at room temperature. However, the cost of CZT dramatically increases as its size increases. In this study, to achieve a large effective volume with relatively low cost, an array structure comprised of individual virtual Frisch-grid CZT detectors was proposed. Materials and Methods: The prototype consisted of 2 × 2 CZTs, a holder, anode and cathode printed circuit boards (PCBs), and an application-specific integrated circuit (ASIC). CZTs were used and the non-contacting shielding electrode method was applied for virtual Frisch-grid effect. An ASIC was used, and the holder and the PCBs were fabricated. In the current system, because the CZTs formed a common cathode, a total of 5 channels were assigned for data processing. Results and Discussion: An experiment using 137Cs at room temperature was conducted for 10 minutes. Energy and timing information was acquired and the depth of interaction was calculated by the timing difference between the signals of both electrodes. Based on obtained three-dimensional position information, the energy correction was carried out, and as a result the energy spectra showed the improvements. In addition, a Compton image was reconstructed using the iterative method. Conclusion: The virtual Frisch-grid CZT detector based on the array structure was developed and the energy spectra and the Compton image were successfully acquired.

A Study on Particle Diffusion to Develop Faraday Cup Array of Particle Beam Mass Spectrometer System (Faraday cup array 개발을 위한 Particle Beam Mass Spectrometer 시스템 내에서의 입자 확산 연구)

  • Mun, Ji-Hun;Shin, Yong-Hyun;Kim, Tae-Sung;Kang, Sang-Woo
    • Particle and aerosol research
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Faraday cup electrode of different size has been developed and evaluated to investigate the diffusion effect of particles by Brownian motion in a particle beam mass spectrometer(PBMS). Particles which focused and accelerated by aerodynamic lens are charged to saturation in an electron beam, and then deflected electrostatically into a Faraday cup detector for measurement of the particle current. The concentration of particles is converted from currents detected by Faraday cup. Measurements of particle current as a function of deflection voltage are combined with measured relationships between particle velocity and diameter, charge and diameter, and mass and diameter, to determine the particle size distribution. The particle currents were measured using 5, 10, 20, 40 mm sized Faraday cup that can be move to one direction by motion shaft. The current difference for each sizes as a function of position was compared to figure out diffusion effect during transport. Polystyrene latex(PSL) 100, 200 nm sized standard particles were used for evaluation. The measurement using 5 mm sized Faraday cup has the highest resolution in a diffusion distance and the smaller particles had widely diffused.

Precision measuring of burrs on sheet metal using the laser (레이저를 이용한 박판 버의 정밀측정)

  • 신홍규;홍남표;김헌영;김병희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1824-1827
    • /
    • 2003
  • The sheet metal shearing process is normally used in the precision elements such as semi-conductor components. In precision elements, burrs usually reduce the quality of machined parts and cause interference, jamming and misalignment during assembly procedures and because of their sharpness, they can be safety hazard to personnel. Furthermore, not only burrs are hard to predict and avoid, but also deburring, the process of removing burrs, is time-consuming and costly. In order to get the burr-free parts, therefore, we developed the precise burr measuring system using the laser. The laser burr measuring system consists of the laser probe, the photo detector, the achromatic doublet lens, and the rotary & the X-Y table. In previous reports, we used simple vertical measuring method. But, as we used relatively bigger laser spot diameter and had the limited reflection angle, it was difficult to obtain the precise measuring results. So called, the spot size effect makes the profile of burr measured distorted and the burr height measured smaller. By introducing the novel laser measuring method which employing the achromatic lens system and the tilting mechanism, we could make the spot size smaller and get the appropriate beam direction angle. Through the experiments, the accuracy of the developed system is proved. The burr height measured during the punching process can be used for automatic deburring and in-situ aligning.

  • PDF

The effect of geometrical parameters on the radon emanation coefficient and different radon parameters

  • Entesar H. El-Araby;A. Azazi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4096-4101
    • /
    • 2023
  • Radon is a radioactive gas produced from the uranium-238 series. Radon gas affects public health and is the second cause of lung cancer. The study samples were collected from one area of the city of Jazan, southwest of the Kingdom of Saudi Arabia. The influence of engineering and physical parameters on the emanation coefficient of gas and other gas parameters was studied. Parameters for radon were measured using a CR-39 Solid-State Nuclear Track Detector (SSNTD) through a sealed emission container. The results showed that the emanation coefficient was affected directly by the change in the grain size of the soil. All parameters of measured radon gas have the same behavior as the emanation coefficient. The relationship between particle size and emanation coefficient showed a good correlation. The values of the emanation coefficient were inversely affected by the mass of the sample, and the rest of the parameters showed an inverse behavior. The results showed that increasing the volume of the container increases the accumulation of radon sons on the wall of the container, which increases the emission factor. The rest of the parameters of radon gas showed an inverse behavior with increasing container size. The results concluded that changing the engineering and physical parameters has a significant impact on both the emanation coefficient and all radon parameters. The emanation coefficient affects the values of the radiation dose of an alpha particle.

Monte Carlo-based identification of electron and proton edges for calibration of miniaturized tissue equivalent proportional counter

  • Mingi Eom;Sukwon Youn;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4167-4172
    • /
    • 2023
  • Miniaturized tissue equivalent proportional counters (mini-TEPCs) are proper for radiation dosimetry in medical application because the small size of the dosimeter could prevent pile-up effect under the high intensity of therapeutic beam. However, traditional methods of calibrating mini-TEPCs using internal alpha sources are not feasible due to their small size. In this study, we investigated the use of electron and proton edges on Monte Carlo-generated lineal energy spectra as markers for calibrating a 0.9 mm diameter and length mini-TEPC. Three possible markers for each spectrum were calculated and compared using different simulation tools. Our simulations showed that the electron edge markers were more consistent across different simulation tools than the proton edge markers, which showed greater variation due to differences in the microdosimetric spectra. In most cases, the second marker, yδδ, had the smallest uncertainty. Our findings suggest that the lineal energy spectra from mini-TEPCs can be calibrated using Monte Carlo simulations that closely resemble real-world detector and source geometries.

SIMPLE EXTRINSIC FIBER OPTIC METHOD TO EVALUATE ABSORBANCE IN AQUEOUS NANOPARTICLE

  • Hanh, Nguyen Thi Kieu;Kulkarnib, Atul;Kim, T.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1723-1726
    • /
    • 2008
  • In recent years, there has been a remarkable progress in the development of the fiber optic sensors for the detection of various chemicals. Fiber optic sensors have the advantages of very small size, flexibility and low cost. The fiber optic sensors employing different optical or spectroscopic phenomena have been reported such as bulk absorption, optical reflectance, fluoresces and energy transfer. In this study, the effect of nanoparticle concentration in liquid upon light absorption and scattering was studied using extrinsic fiber optic method. For the evaluation, we used Red (650 nm) and Blue (430 nm) light sources which are coupled through the standard cuvette using optical fiber to detector. The experiments are carried out with Polystyrene latex (400 - 800 nm), and Silicon (35 - 110 nm) nanoparticles suspended in Isopropanol. Differences in light absorption and scattering depending on nanoparticle concentration and type are discussed. This method may be useful to study nanoparticles properties for various application and research.

  • PDF

Reducing of Craniofacial Radiation Dose Using Automatic Exposure Control Technique in the 64 Multi-Detector Computed Tomography (64 다중 검출기 전산화단층촬영에서 관전류 자동노출조절 기법을 이용한 두개부 방사선량 감소 정도 평가)

  • Seoung, Youl-Hun;Kim, Yong-Ok;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • The purpose of this study was to evaluate the usefulness of reducing of craniofacial radiation dose using automatic exposure control (AEC) technique in the 64 multi-detector computed tomography (MDCT). We used SOMATOM Definition 64 multi-detector CT, and head of whole body phantom (KUPBU-50, Kyoto Kagaku CO. Ltd). The protocol were helical scan method with 120 kVp, 1 sec of rotation time, 5 mm of slice thickness and increment, 250 mm of FOV, $512{\times}512$ of matrix size, $64{\times}0.625\;mm$ of collimation, and 1 of pitch. The evaluation of dose reducing effect was compared the fixed tube current of 350 with AEC technique. The image quality was measured the noise using standard deviation of CT number. The range of craniofacial bone was to mentum end from calvaria apex, which devided three regions: calvaria~superciliary ridge (1 segment), superciliary ridge~acanthion (2 segment), and acanthion~mentum (3 segment). In the fixed tube current technique, CTDIvol was 57.7 mGy, DLP was $640.2\;mGy{\cdot}cm$ in the all regions. The AEC technique was showed that 1 segment were 30.7 mGy of CTDIvol, 340.7 $mGy{\cdot}cm$ of DLP, 2 segment were 46.5 mGy of CTDIvol, $515.0\;mGy{\cdot}cm$ of DLP, and 3 segment were 30.3 mGy of CTDIvol, $337.0\;mGy{\cdot}cm$ of DLP. The standard deviation of CT number was 2.622 with the fixed tube current technique and 3.023 with the AEC technique in the 1 segment, was 3.118 with the fixed tube current technique and 3.379 with the AEC technique in the 2 segment, was 2.670 with the fixed tube current technique and 3.186 with the AEC technique in the 3 segment. The craniofacial radiation dose using AEC Technique in the 64 MDCT was evaluated the usefulness of reducing for the eye, the parotid and thyroid with high radiation sensitivity particularly.

A Study on the Neutron in Radiation Treatment System and Related Facility (방사선치료 장치 및 관련시설에서의 산란 중성자에 관한 연구)

  • Kim Dae-Sup;Kim Jeong-Man;Lee Hee-Seok;Lim Ra-Seung;Kim You-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.141-145
    • /
    • 2005
  • Purpose : It is known that the neutron is generally generated from the photon, its energy is larger than 10 MV. The neutron is leaked in the container inspection system installed at the customs though its energy is below 9 MV. It is needed that the spacial effect of the neutrons released from radiation treatment machine, linac, installed in the medical canter. Materials and Methods : The medical linear accelerator(Clinac 1800, varian, USA) was used in the experiment. Measuring neutron was used bubble detector(Bubble detector, BDPND type, BTI, Canada) which was created bubble by neutron. The bubble detector is located on the medical linear accelerator outskirt in three different distance, 30, 50, 120 cm and upper, lower four point from the iso-center. In addition, for effect on protect material we have measured eight points which are 50 cm distance from iso-center. The SAD(source-axis-distance), distance from photon source to iso-center, is adjusted to 100 cm and the field size is adjusted to $15{\times}15cm^2$. Irradiate 20 MU and calculate the dose rate in mrem/MU by measuring the number of bubble. Results : The neutron is more detected at 5 position in 30, 50 cm, 7 position in 120 cm and with wedge, and 2 position without mount. Conclusion : Though detection position is laid in the same distance in neutron measurement, the different value is shown in measuring results. Also, neutron dose is affected by the additional structure, the different value is obtained in each measurement positions. So, it is needed to measure and evaluate the neutron dose in the whole space considering the effect of the distance, angular distribution and additional structure.

  • PDF

Experimental Apparatus for Opposition Effect at Seoul National University

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Seo, Jin-Guk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2018
  • The Opposition Effect (OE) is an enhancement of the brightness of a reflecting light as the phase angle (the Sun-target-observer angle) approaches zero. The mechanisms have been studied both theoretically and experimentally and nowadays recognized that there are two major mechanisms, namely, coherent backscattering OE (CBOE) and shadow hiding OE (SHOE). From data analyses of an S-type asteroid Itokawa taken with the Hayabusa spacecraft onboard camera, it is suggested that the CBOE would be dominant at phase angle smaller than ~ 1.4 deg, while SHOE dominates at larger phase angles (M. Lee & M. Ishiguro, under review). The study on the physical parameters which affect the OE, such as size and composition, will lead us to find a way to disentangle each of them from observation. The experiments in lab, however, faces two major difficulties: (a) the detector blocks the incident light if phase angle is nearly zero and (b) incident and emission angles must be controlled with high angular resolution to prevent blurring of OEs at different phase angles in one measurement. In this presentation, we introduce a new apparatus which has been installed at Seoul National University to investigate the OE in our lab, and summarize the initial results. It will be a valuable starting point to establish infrastructure in Korea, and will shed light on the investigation of OE physics using laboratory simulants.

  • PDF