• Title/Summary/Keyword: detection methods

Search Result 7,210, Processing Time 0.038 seconds

Fast Lamp Pairing-based Vehicle Detection Robust to Atypical and Turn Signal Lamps at Night

  • Jeong, Kyeong Min;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.269-275
    • /
    • 2017
  • Automatic vehicle detection is a very important function for autonomous vehicles. Conventional vehicle detection approaches are based on visible-light images obtained from cameras mounted on a vehicle in the daytime. However, unlike daytime, a visible-light image is generally dark at night, and the contrast is low, which makes it difficult to recognize a vehicle. As a feature point that can be used even in the low light conditions of nighttime, the rear lamp is virtually unique. However, conventional rear lamp-based detection methods seldom cope with atypical lamps, such as LED lamps, or flashing turn signals. In this paper, we detect atypical lamps by blurring the lamp area with a low pass filter (LPF) to make out the lamp shape. We also propose to detect flickering of the turn signal lamp in a manner such that the lamp area is vertically projected, and the maximum difference of two paired lamps is examined. Experimental results show that the proposed algorithm has a higher F-measure value of 0.24 than the conventional lamp pairing-based detection methods, on average. In addition, the proposed algorithm shows a fast processing time of 6.4 ms per frame, which verifies real-time performance of the proposed algorithm.

A Study on Actuation Probability of Underwater Weapon Based on Magnetic Field (Magnetic Field 기반 수중무기체계 발화확률에 관한 연구)

  • Lim, Byeong-Seon;Hong, Sung-Pyo;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1253-1258
    • /
    • 2013
  • This Paper deals with detection and defense methods for underwater weapons because there are so many dangers of underwater weapons not only in the war period but also in the peace time. Underwater mines are the representative strategic arms. The sensors and target detection methods, threat elimination method of mines included in this paper. Among the various sensors of mine, we use the magnetometor for target detection method in the simulation and execute the analysis of magnetic field of detected target ships. It will be also provided that effectiveness of target detection, sweeping method of mine, tactics of mine planning and mine sweeping and so on.

Application of Reinforcement Learning in Detecting Fraudulent Insurance Claims

  • Choi, Jung-Moon;Kim, Ji-Hyeok;Kim, Sung-Jun
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.125-131
    • /
    • 2021
  • Detecting fraudulent insurance claims is difficult due to small and unbalanced data. Some research has been carried out to better cope with various types of fraudulent claims. Nowadays, technology for detecting fraudulent insurance claims has been increasingly utilized in insurance and technology fields, thanks to the use of artificial intelligence (AI) methods in addition to traditional statistical detection and rule-based methods. This study obtained meaningful results for a fraudulent insurance claim detection model based on machine learning (ML) and deep learning (DL) technologies, using fraudulent insurance claim data from previous research. In our search for a method to enhance the detection of fraudulent insurance claims, we investigated the reinforcement learning (RL) method. We examined how we could apply the RL method to the detection of fraudulent insurance claims. There are limited previous cases of applying the RL method. Thus, we first had to define the RL essential elements based on previous research on detecting anomalies. We applied the deep Q-network (DQN) and double deep Q-network (DDQN) in the learning fraudulent insurance claim detection model. By doing so, we confirmed that our model demonstrated better performance than previous machine learning models.

Adversarial Detection with Gaussian Process Regression-based Detector

  • Lee, Sangheon;Kim, Noo-ri;Cho, Youngwha;Choi, Jae-Young;Kim, Suntae;Kim, Jeong-Ah;Lee, Jee-Hyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4285-4299
    • /
    • 2019
  • Adversarial attack is a technique that causes a malfunction of classification models by adding noise that cannot be distinguished by humans, which poses a threat to a deep learning model. In this paper, we propose an efficient method to detect adversarial images using Gaussian process regression. Existing deep learning-based adversarial detection methods require numerous adversarial images for their training. The proposed method overcomes this problem by performing classification based on the statistical features of adversarial images and clean images that are extracted by Gaussian process regression with a small number of images. This technique can determine whether the input image is an adversarial image by applying Gaussian process regression based on the intermediate output value of the classification model. Experimental results show that the proposed method achieves higher detection performance than the other deep learning-based adversarial detection methods for powerful attacks. In particular, the Gaussian process regression-based detector shows better detection performance than the baseline models for most attacks in the case with fewer adversarial examples.

Recent Research Trends in Explosive Detection through Electrochemical Methods (전기화학적 방법을 통한 폭발물 검출 연구동향)

  • Lee, Wonjoo;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.399-407
    • /
    • 2019
  • The development of explosive detection technology in a security environment and fear of terrorism at homeland and abroad has been one of the most important issues. Moreover, research works on the explosive detection are highly required to achieve domestic production technology due to the implementation of aviation security performance certification system. Traditionally, explosives are detected by using classical chemical analyses. However, in the view of high sensitivity, rapid analysis, miniaturization and portability electrochemical methods are considered as promising. Most of electrochemical explosive detection technologies are developed in USA, China, Israel, etc. This review highlights the principle and research trend of electrochemical explosive detection technologies carried out overseas in addition to the research direction for future exploration.

A Study on Improving the Accuracy of Wafer Align Mark Center Detection Using Variable Thresholds (가변 Threshold를 이용한 Wafer Align Mark 중점 검출 정밀도 향상 연구)

  • Hyeon Gyu Kim;Hak Jun Lee;Jaehyun Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.108-112
    • /
    • 2023
  • Precision manufacturing technology is rapidly developing due to the extreme miniaturization of semiconductor processes to comply with Moore's Law. Accurate and precise alignment, which is one of the key elements of the semiconductor pre-process and post-process, is very important in the semiconductor process. The center detection of wafer align marks plays a key role in improving yield by reducing defects and research on accurate detection methods for this is necessary. Methods for accurate alignment using traditional image sensors can cause problems due to changes in image brightness and noise. To solve this problem, engineers must go directly into the line and perform maintenance work. This paper emphasizes that the development of AI technology can provide innovative solutions in the semiconductor process as high-resolution image and image processing technology also develops. This study proposes a new wafer center detection method through variable thresholding. And this study introduces a method for detecting the center that is less sensitive to the brightness of LEDs by utilizing a high-performance object detection model such as YOLOv8 without relying on existing algorithms. Through this, we aim to enable precise wafer focus detection using artificial intelligence.

  • PDF

CNN based IEEE 802.11 WLAN frame format detection (CNN 기반의 IEEE 802.11 WLAN 프레임 포맷 검출)

  • Kim, Minjae;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.27-33
    • /
    • 2020
  • Backward compatibility is one of the key issues for radio equipment supporting IEEE 802.11, the typical wireless local area networks (WLANs) communication protocol. For a successful packet decoding with the backward compatibility, the frame format detection is a core precondition. This paper presents a novel frame format detection method based on a deep learning procedure for WLANs affiliated with IEEE 802.11. Considering that the detection performance of conventional methods is degraded mainly due to the poor performances in the symbol synchronization and/or channel estimation in low signal-to-noise-ratio environments, we propose a novel detection method based on convolutional neural network (CNN) that replaces the entire conventional detection procedures. The proposed deep learning network provides a robust detection directly from the receive data. Through extensive computer simulations performed in the multipath fading channel environments (modeled by Project IEEE 802.11 Task Group ac), the proposed method exhibits superb improvement in the frame format detection compared to the conventional method.

The study on configuration method for the vehicle-based train position detection (차상기반 열차위치검지방식의 구성방안 연구)

  • Shin, Kyung-Ho;Jung, Eui-Jin;Kim, Jong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.238-240
    • /
    • 2006
  • For the method of train position detection, ground-based train position estimation mainly has been applied so far. Ground-based position detection is the way to detect train current positions by installing train position equipments on railroad lines. However, the ground-based methods should install detection equipments on each section, and can only be able to detect train positions from main command center. So this method has several disadvantages such as an discontinuous position detection, an increment in cost of installation and maintenance. To make possible continuous train position detection, and to minimize amount of the cost, the vehicle-based position detection method should be chosen to determine train positions by loading position equipments on vehicles. In this paper, to realize the vehicle-based train position detection method, configuration scheme of train position detection equipment is suggested by using GPS, inertial sensor, speed sensor and its performance is verified by simulations.

  • PDF

A Method for Quantitative Performance Evaluation of Edge Detection Algorithms Depending on Chosen Parameters that Influence the Performance of Edge Detection (경계선 검출 성능에 영향을 주는 변수 변화에 따른 경계선 검출 알고리듬 성능의 정량적인 평가 방법)

  • 양희성;김유호;한정현;이은석;이준호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.993-1001
    • /
    • 2000
  • This research features a method that quantitatively evaluates the performance of edge detection algorithms. Contrary to conventional methods that evaluate the performance of edge detection as a function of the amount of noise added to he input image, the proposed method is capable of assessing the performance of edge detection algorithms based on chosen parameters that influence the performance of edge detection. We have proposed a quantitative measure, called average performance index, that compares the average performance of different edge detection algorithms. We have applied the method to the commonly used edge detectors, Sobel, LOG(Laplacian of Gaussian), and Canny edge detectors for noisy images that contain straight line edges and curved line edges. Two kinds of noises i.e, Gaussian and impulse noises, are used. Experimental results show that our method of quantitatively evaluating the performance of edge detection algorithms can facilitate the selection of the optimal dge detection algorithm for a given task.

  • PDF

Real-Time Fire Detection Method Using YOLOv8 (YOLOv8을 이용한 실시간 화재 검출 방법)

  • Tae Hee Lee;Chun-Su Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.77-80
    • /
    • 2023
  • Since fires in uncontrolled environments pose serious risks to society and individuals, many researchers have been investigating technologies for early detection of fires that occur in everyday life. Recently, with the development of deep learning vision technology, research on fire detection models using neural network backbones such as Transformer and Convolution Natural Network has been actively conducted. Vision-based fire detection systems can solve many problems with physical sensor-based fire detection systems. This paper proposes a fire detection method using the latest YOLOv8, which improves the existing fire detection method. The proposed method develops a system that detects sparks and smoke from input images by training the Yolov8 model using a universal fire detection dataset. We also demonstrate the superiority of the proposed method through experiments by comparing it with existing methods.

  • PDF