• Title/Summary/Keyword: detached breakwater

Search Result 36, Processing Time 0.021 seconds

EVP Models for Wave Transformation in Regions of Slowly Varying Depth (EVP방법(方法)을 이용한 완경사(緩傾斜) 영역(領域)에서의 파랑변형(波浪變形) 수치모형(數値模型))

  • Oh, Seong Taek;Lee, Kil Seong;Lee, Chul Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.231-238
    • /
    • 1992
  • Error vector propagation method is applied to the elliptic mild slope equation in order to reduce the computation time. Results from the elliptic, parabolic, and hyperbolic models are compared with experimental data for an elliptic shoal. Also, results of the elliptic and hyperbolic models are compared with experimental data for a detached breakwater. As a result of applying this model. it is concluded that the present model satisfactorily reduces the computation time compared with other numerical models. In the accuracy of solutions, there are some oscillations but the trend compares well with other models.

  • PDF

Installation Technology and Behavior of Silty Clay Filled Geotextile Tube (실트질 점토 채움 시 지오텍스타일 튜브의 거동 및 시공 방법에 관한 연구)

  • Shin, Eun-Chul;Oh, Young-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(detached breakwater, groins and jetty). The geotextile tubes are made of sewn geosynthetics sheets. If the sandy soil is use to fill material, these inlets should be spaced closely to assure uniform filling of the tubes because sandy soil and geosynthetic is very pervious. However, the clayey soil or contaminated slurry is used, the inlets can be located relatively long distance. The fine clayey particles tend to rapidly blind the fabric slowing down water escape through the geotextile. This paper presents a field test result of a geotextile tube in the land reclamation project for the Songdo New City construction site. The dredged silty clay was dredged by the dredging ship and hydraulically pumped into the geotextile tube. The height of geotextile tube was measured at every filling stage and also measured width and diameter of geotextile tube with the elapsed time. Based on the test results, if the clayey filling material is used, the pumping step must be divided 3~4 stages for drainage and sediment. After complete drainage, the height of the geotextile tube reduces by approximately 50%.

  • PDF

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters : PART I - Effect of Plane Arrangement of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 : PART I - 잠제의 평면배치에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.345-354
    • /
    • 2008
  • In this present study, we made a first attempt to investigate physical transformations of incident waves in surf and swash zone and hydrodynamic phenomena of detached and submerged breakwaters. For an accurate simulation of the complicated wave deformation, Three-Dimensional numerical model with Large Eddy Simulation has been developed recently and expanded properly for the current applications, which is able to simulate an accurate and direct WAve Structure Sandy seabed interaction (hereafter, LES-WASS-3D). LES-WASS-3D has been validated through the comparison with experimental results for limited cases, and has been used for the simulation of wave run-up on sandy beach, mean fluid flows over and around submerged structures and swash zone (alongshore/rip current), and spatial distribution of wave height in wide fluid regions. In addition, a strategy of efficient deployment ($Y/L_i=1.50{\sim}1.75$, $W/L_r=0.50$) of the submerged breakwaters has been discussed.

Hydraulic Characteristics Investigation due to the Change of GapWidth between Artificial Reefs (인공리프 개구폭 변화에 따른 흐름특성 고찰)

  • Kim, Kyu-Han;Shim, Kyu-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.408-415
    • /
    • 2016
  • Small fishing ports and coastal structures installed in a relatively low sea water depth disturb the wave induced current and cause the collapse of equilibrium state of sediment transport. These structures creates diffracted waves and matter the concentration of waves to cause the beach erosion. In order to mitigate these eroding problems on the beach, many counter measurements were proposed such as detached breakwater, groin or headland; however, these methods interrupt the aesthetic view of sandy beach due to the exposed structures above the sea level and have difficulty of applying to those beaches with the good scenery. Furthermore, some of these methods create secondary environmental problems after the installations. To eliminate these problems, one of the countermeasures, artificial reefs have been selected and used worldwide to minimize the disturbance of the scenery and secondary effects on the environment. Meanwhile, it is important to set the design elements for installing the artificial reefs such as that of length, opening width, clearing distances from the shoreline and more. Nevertheless, there are no construction manuals or standards for designing the artificial reefs with these important design elements yet. In this study, different conditions of artificial reefs were used with various cases throughout hydraulic model test to precisely analyze the changes of waves and currents to propose the standards of design elements to install the artificial reefs.

A Practical Algorithm to Simulate Erosion of On-Shore Zone (실용적 해안선 후퇴 반영 알고리즘)

  • Kim, Hyoseob;Lee, Jungsu;Jin, Jae-Youll;Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.423-430
    • /
    • 2013
  • An algorithm to allow shoreline movement during numerical experiment on sediment transport, deposition or resuspension for general coastal morphology is proposed here. The bed slope near shoreline, i.e. mean sea level, is influenced by bed material, tidal current, waves, and wave-induced current, but has been reported to remain within a stable range. Its annual variation is not large, either. The algorithm is adjusting the bathymetry, if the largest bed slope within shoreline band exceeds a given bed slope due to continuous erosion at zones below the shoreline. This algorithm automatically describes retreat of shoreline caused by erosion, when used within a numerical system. The algorithm was tested to a situation which includes a continuous dredging at a point, and showed satisfactory development of concentric circle contours. Next, the algorithm was tested to another situation which includes sinking of eroded part of bed plate, and produced satisfactory results, too. Finally, the algorithm was tested to a movable-bed laboratory experimental conditions. The shoreline movement behind detached breakwater was reasonably reproduced with this algorithm.

The Study of Wave, Wave-Induced Current in CHUNG-UI Beach (충의휴양소 전면 해수욕장의 파랑 및 해빈류에 관한 연구)

  • Chang, Pyong-Sang;Bae, Sung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.142-149
    • /
    • 2019
  • In this study, the past erosion history and current status in the CHUNG-UI beach of Eulwang-dong, Jung-gu, Incheon-Si, South Korea were investigated and analyzed the wave with wave-induced current to investigate the causes of coastal erosion. As a result, the significant wave height ($H_{1/3}$) was in the range of 0.07~1.57 m and the mean value was 0.21 m. The maximum wave height ($H_{max}$) was in the range of 0.02-4.76m and the mean value was 0.27m. The vertical wave height and cycles were estimated through numerical model experiments of wave transformation. The 50-year frequency design wave height ranged from 0.82m to 3.75m. As a result of the experiment of wave-induced current, wave-induced current in the CHUNG-UI beach was decreased after the installation of the Detached breakwater and the Jetty. On the other hand, when the crest elevation was increased up to 5 m, there was no significant change, but when the crest elevation was increased to 8m, strong wave-induced current occurred around the submerged breakwaters due to lowered depth of water. In addition, the main erosion of the CHUNG-UI beach is due to the intensive invasion of the wave characteristics coming from the outer sea into the white sandy beach. The deformation of the wave centered on the front of the sandy beach caused additional longshore currents flowing parallel to the sandy beach and rip currents in the transverse direction, thus confirming that the longshore sediment was moved out of the front and out of the sea. The results of this study can be used as preliminary data for the recovery of the sand and the selection of efficient erosion prevention facilities.