• Title/Summary/Keyword: destruction efficiency

Search Result 190, Processing Time 0.022 seconds

Studies on the Evaluation Method of Strength Comparison for Application in Joint Separation Test Body to Structural Concrete (구조체 콘크리트에 접합분리 시험체의 적용을 위한 강도비교에 관한 실험적 연구)

  • Kim, Seong-Deok;Lee, Seon-Ho;Jung, Kwang-sik;Paik, Min-su;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.79-82
    • /
    • 2008
  • It has been reported that destruction test by core collection is the most reliable of the structural concrete strength in present building construction field. But it causes low efficiency by damage and cutting in structure due to the core collection. It also has some problems in repairing. Additionally in case of strength test with management specimen, different environment compared to the structure environment cause problems about estimation precise structure strength. Therefore, it is required to develop structure direct strength test that has test values and credibility above the ones obtained by core specimen collection strength test and seasonal specimen test to suggest a reasonable and practical management method of structural concrete.

  • PDF

Computerized Golf Course Design Techniques Considering Environmental Impacts (환경영향을 고려한 골프코스 전산설계기법)

  • 주영규;전수복
    • Asian Journal of Turfgrass Science
    • /
    • v.8 no.3
    • /
    • pp.179-192
    • /
    • 1994
  • Much attention has been paid recently to environmental destruction by golf course constructions in Koera. An efficiency and up-to-date technology on the planning and design practices has been requested to minimize the environmental impacts. Computerized systems for golf course design in the point of physical conservation of environment were discussed here. Geograpic Information System were applied on the process of geograpical data input and analysis through the final outputs, Simulation works by the total database management make enable to pre-investigate of the design in view of an assessment of environment impacts. It is also possible to evaluate plans easily and propose the alternatives properly. Precise quantity caculation of en-gineering works by computer system should be guarantee scientific, economic, and environme-ntally sound golf course design.

  • PDF

고용보호규제 완화의 노동시장 성과에 대한 효과

  • Choe, Gyeong-Su
    • KDI Journal of Economic Policy
    • /
    • v.24 no.1
    • /
    • pp.45-112
    • /
    • 2002
  • Enhancing labor market flexibility is currently posted as one of the major economic policy objectives in Korea. However, the labor market effects of specific policies to achieve it have not been sufficiently investigated. This paper takes up the issue of employment protection deregulation and surveys and empirically analyzes its policy effects. Academic researches generally confirm that deregulation tends to promote labor turnover and employment of the disadvantaged groups such as the youth and female by raising the overall efficiency of the economy, but its effects on unemployment is not clear. In the Korean labor market, both job creation and destruction, and labor mobility have increased after the economic crisis of 1998, but they can not be seen as deregulation effects as the changes are confined to the temporary and daily employment whose labor markets are least regulated whereas the regular employment market remains virtally unchanged. Such results suggest that labor market deregulation need to be pursued consistently as a policy goal since the labor demand condition shift and the need for expanding regular employment necessitates it, for which detailed policy agenda for removing market inefficiencies should be carefully arranged.

  • PDF

Flame Extinguishing Characteristics of Clean Gaseous Agents and Effects of Additives (가스계 청정소화약제의 소화특성과 첨가제에 따른 영향)

  • Shin, Chang-Sub;Kim, Sung-Min
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.95-99
    • /
    • 2008
  • Halon was known as a cause of the ozone layer destruction. In 1987, it was designated as one of the ozone-layer-destroying materials in the Montreal Protocol. Therefore substitutes of Halon agent has been developed including inert gas extinguish system, which is one of the most widely used fire extinguishing system. This study intended to increase the efficiency of inert gas extinguishing agent by using inert gas additives. As IG-541 shows high extinguishing power, the experiment was performed to measure the effects of gaseous additives to it. Cup-burner fire extinguishing apparatus was used with n-Heptane fuel. Among many of pure inert gaseous agents, Helium showed the most excellent extinguishing power. When Helium was added to IG-541, fire extinguishing power was increased and the concentration of oxygen in chimney also risen. By adding Helium to IG-541, the effectiveness of inert gas fire extinguishing system is able to be increased.

Characteristics of Carbon Dioxide Reduction in the Gliding Arc Plasma Discharge (글라이딩 아크 플라즈마 방전에 의한 이산화탄소 저감 특성)

  • Lim, Mun Sup;Kim, Seung Ho;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.205-209
    • /
    • 2015
  • CCU (Carbon Capture & Utilization) has a potential technology for the reduction and usage of carbon dioxide which is greenhouse gas emitting from a fossil fuel buring. To decompose the carbon dioxide, a three phase gliding arc plasma-catalytic reactor was designed and manufactured. Experiments of carbon dioxide reduction was performed by varying the gas flow rate with feeding the $CO_2$ only as well as the input power, the catalyst type and steam supply with respect to the injection of the mixture of $CO_2$ and $CH_4$. The $CO_2$ decomposition rate was 7.9% and the energy efficiency was $0.0013L/min{\cdot}W$ at a $CO_2$ flow rate of 12 L/min only. Carbon monoxide and oxygen was generated in accordance with the destruction of carbon dioxide. When the injection ratio of $CH_4/CO_2$ reached 1.29, the $CO_2$ destruction and $CH_4$ conversion rates were 37.8% and 56.6% respectively at a power supply of 0.76 kW. During the installation of $NiO/Al_2O_3$ catalyst bed, the $CO_2$ destruction and $CH_4$ conversion rates were 11.5% and 9.9% respectively. The steam supply parameter do not have any significant effects on the carbon dioxide decomposition.

Characteristics of a Plasma-Dump Combustor for VOC Destruction (VOC 분해 플라즈마-덤프 연소기 특성)

  • Kim, Eun Hyuk;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.492-497
    • /
    • 2015
  • VOCs (Volatile Organic Compounds) are generally generated in the painting process, or at the company and laundry where use organic solvents. The VOCs consist of various hydrocarbons and has low calorific value due to its dilution with atmospheric air. Therefore, the VOCs are difficult to burn by a conventional fuel combustor. In this study, a novel plasma dump combustor was proposed for the treatment of low calorific VOC gases. This combustor was designed a combination of the characteristics in a plasma burner, a dump combustor and a 3D matrix burner. The combustor has good structure for maintaining enough residence time and reaction temperature for stable flame formation and VOC destruction. For investigating the performance characteristics of the plasma dump combustor, an experiment was achieved for VOC feed rate, VOC injector position, etc. Toluene was used as a surrogate of VOC. The novel combustor gave better performance than a conventional combustor, showing that VOC destruction rate and energy efficiency were 89.64% and 12.27 kg/kWh respectively, at feeding rate of 450 L/min of VOC of 3,000 ppm of toluene concentration.

Removal of Microcystis aeruginosa using polyethylenimine-coated alginate/waste biomass composite biosorbent (양이온성 고분자(polyethylenimine)가 코팅된 알지네이트/폐바이오매스 복합 흡착소재를 사용한 유해 미세조류 Microcystis aeruginosa의 제거)

  • Kim, Hoseon;Byun, Jongwoong;Choi, In Tae;Park, Yun Hwan;Kim, Sok;Choi, Yoon-E
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.741-748
    • /
    • 2019
  • As the occurrence of harmful algal blooms (HABs) have become severe in precious water resources, the development of efficient harmful algae treatment methods is considering as an important environmental issue for sustainable conservation of water resources. To treat HABs in water resources, various conventional physical and chemical methods have been utilized and showed treatment efficiency, However, these methods can lead to discharging of cyanotoxins into the water bodies by chemical or physical algal cell lysis or destruction. Thus, to overcome this limitation, the development of safe HABs treatment methods is required. In the present study, adsorption technology was investigated for the removal of harmful algal species, Microcystis aeruginosa from aqueous phases. Industrial waste biomass, Corynebacterium glutamicum biomass was valorized as biosorbent (PEI-modified alginate/biomass composite fiber; PEI-AlgBF) for M. aeruginosa through immobilization with alginate matrix and cationic polymer (polyethylenimine; PEI) coating. The functional groups characteristic of PEI-Alg was determined using FT-IR analysis. By adsorption process used PEI-AlgBF, 52 and 67% of M. aeruginosa could be removed under the initial density of M. aeruginosa 200×104 cells mL-1 and 50×104 cells mL-1, respectively. As the increasing surface area of PEI-AlgBF, the removal efficiency was increased. In addition, we could find that adsorptive removal of M. aeruginosa has occurred without any M. aeruginosa cell lysis and destruction.

Application of Free Water Surface Constructed Wetland for NPS Control in Livestock Watershed Area (축산단지 비점오염물질 저감을 위한 자유수면형 인공습지 적용)

  • Lee, Jeong-Yong;Kang, Chang-Guk;Lee, So-Young;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.481-488
    • /
    • 2011
  • Various development activities have lead to the destruction of the ecosystem such as natural wetlands. In order to protect these natural wetlands, the Ministry of Environment (MOE) in Korea enacted the Wetland Conservation Act in 1999 and designated protected areas for wetland conservation. The MOE adapted the use of Best Management Practices (BMP) such as retention ponds and constructed wetlands to treat the polluted water before entering the water system. One of these projects was a free-water surface flow (FWS) constructed wetland built as a secondary treatment unit for piggery wastewater effluent coming from a livestock wastewater treatment facility. Water quality monitoring for the constructed wetland was conducted during rainfall events. The results showed that the average removal efficiencies of TSS, BOD, TN, TP were 86, 60, 45, 70%, respectively. It was observed that the removal efficiency of particulate matter and phosphorus was high compared to nitrogen. Therefore, a longer hydraulic retention time was needed in order to improve the treatment efficiency of nitrogen. The results of this study can contribute to the wetland design, operation and maintenance of constructed wetlands.

A Study on the Oxygen Consumption Rate and Explosion Energy of Combustible Wood Dust in Confined System - Part I: Quantification of Explosion Energy and Explosive Efficiency (밀폐계 가연성 목재분진의 폭발에너지와 산소소모율에 관한 연구 - Part I: 폭발에너지의 정량화 및 폭발효율)

  • Kim, Yun Seok;Lee, Min Chul;Lee, Keun Won;Rie, Dong Ho
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.55-63
    • /
    • 2016
  • A dust explosion is a phenomenon of strong blast wave propagation involving destruction which results from dust pyrolysis and rapid oxidation in a confined space. There has been some research done to find individual explosion characteristics and common physical laws for various dust types. However, there has been insufficient number of studies related to the heat of combustion of materials and the oxygen consumption energy about materials in respect of dust explosion characteristics. The present study focuses on the relationship between dust explosion characteristics of wood dust samples and oxygen consumption energy. Since it is difficult to estimate the weight of suspended dust participating in explosions in dust explosion and mixtures are in fuel-rich conditions concentrations with equivalent ratios exceeding 1, methods for estimating explosion overpressure by applying oxygen consumption energy based on unit volume air at standard atmospheric pressure and temperature are proposed. In this study an oxygen consumption energy model for dust explosion is developed, and by applying this model to TNT equivalent model, initial explosion efficiency was calculated by comparing the results of standardized dust explosion experiments.

Sterilization of Scoria Powder by Corona Discharge Plasma (코로나 방전 플라즈마를 이용한 화산암재 분말 살균)

  • Jo, Jin Oh;Lee, Ho Won;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.386-391
    • /
    • 2014
  • Atmospheric-pressure nonthermal corona discharge plasma was applied to the sterilization of biologically contaminated scoria powder. Escherichia coli (E. coli) culture solution was uniformly sprayed throughout the scoria powder for artificial inoculation, which was well mixed to ensure uniformity of the batch. The effect of the key parameters such as discharge power, treatment time, type of gas and electrode distance on the sterilization efficiency was examined and discussed. The experimental results revealed that the plasma treatment was very effective for the sterilization of scoria powder; 5-min treatment at 15 W could sterilize more than 99.9% of E. coli inoculated into the scoria powder. Increasing the discharge power, treatment time or applied voltage led to an improvement in the sterilization efficiency. The effect of type of gas on the sterilization efficiency was in order of oxygen, synthetic air (20% oxygen) and nitrogen from high to low. The inactivation of E. coli under the influence of corona discharge plasma can be explained by cell membrane erosion or etching resulting from UV and reactive oxidizing species (oxygen radical, OH radical, ozone, etc.), and the destruction of E. coli cell membrane by the physical action of numerous corona streamers.