• Title/Summary/Keyword: desorption energy

Search Result 339, Processing Time 0.03 seconds

Study on the Adsorption and Desorption Enhance Effect of Oyster Shell Using Peltier Element (페르체소자를 이용한 굴패각의 흡착 및 탈착촉진효과에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the batch type system. The peltier element(thermoelectric device) is used for absorbing and releasing the adsorption and desorption heat generation. The cooling and heating effects of peltier element exist in this experiment and these effects are generally known phenomena among some references. The increase in electric current induced into peltier element is effectively release the heat generation of adsorption and desorption. Consequently, the non-dimensional adsorption and desorption amount would increase with increase in electric current. However, in the case of adsorption, the increase of induced current into peltier element, the heat of cold side can not release sufficiently. So the heat of hot side of peltier is transferred into the cold side.

Adsorption properties of MgO protective layer in AC PDP

  • Manakhov, Anton;Nikishin, Nikolay;Hur, Min;Heo, Eun--Gi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.384-387
    • /
    • 2008
  • We have studied the adsorption of contaminations on the MgO protective layer by Thermal Desorption Spectrometry (TDS). The result shows that the increase in exposure time, MgO thickness and humidity multiply the quantity of adsorbed contaminations. It is also found that the desorption activation energy and contamination quantity is decreased by the additional firing process of MgO layer under oxygen environment.

  • PDF

A Study of Hydrogen Desorption in Dy2Co7-H System (Dy2Co7-H System에서 수소(水素)의 Desorption에 관한 연구(硏究))

  • Nam, ln-Tak
    • Journal of Industrial Technology
    • /
    • v.1
    • /
    • pp.47-51
    • /
    • 1981
  • A Kinetic model of desorption of hydrogen in $Dy_2Co_7-H$ system has been suggested and rate equation of each step of the model has been compared with experimental results. The reat controlling step was hydrogen recombination in metal surface. The activation energy of over-all reaction was about 23kcal/mole.

  • PDF

A Study on Adsorption of Volatile Organic Compound by Activated Carbon Fiber Coated with Dielectric Heating Element and Desorption by Applying Microwave (유전가열물질을 코팅한 활성탄소섬유의 휘발성 유기화합물 흡착 및 마이크로파 인가에 의한 탈착 연구)

  • Kim, Sang-Guk;Chang, Ye-Rim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.122-132
    • /
    • 2009
  • Adsorption of toluene by activated carbon fiber (ACF) coated with dielectric heating element and desorption by applying microwave were investigated. In order to prepare adsorbent so that VOC can be desorbed by microwave heating, fine dielectric heating element with nano size was coated on the surface of the ACF using hybrid binder. Eight adsorbents (ACF-DHE, Activated Carbon Fiber coated with Dielectric Heating Element) were prepared with different amount of dielectric heating element, kinds of hybrid binder, and solvent. In order to investigate adsorption characteristics, BET surface area, pore volume, and average pore size were measured for each adsorbent including ACF. Breakthrough experiments with toluene concentration, flow rate, bed length using fixed bed reactor were performed to investigate adsorbality of adsorbent, and results were compared with that of the ACF. Desorption reactor was constructed with modified microwave oven to investigate heating effect on ACF-DHE by applying microwave power. Each adsorbent saturated with toluene were put into desorption reactor. Composition of desorbed gas generated by applying controlled microwave power to reactor was measured. Up to now, hot air desorption method has been used. Experimental results showed that desorption method with new adsorbent prepared by coating dielectric heating element on ACF can be used for industrial application.

Surface Phenomena of Deuterized Ethanol Exposed Zircaloy-4 Surfaces

  • Park, Ju-Yun;Jung, Se-Won;Chun, Mi-Sun;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1349-1352
    • /
    • 2009
  • We report the results of the surface chemistry of deuterized ethanol exposed Zircaloy-4 (Zry-4) surfaces with various amount of $C_2D_5$OD exposures at 190 K. This system was examined with Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) techniques. In TPD study, $D_2$ was evolved at two different desorption temperature regions accompanying with broad desorption background. The lower temperature feature at around 520 K showed first-order desorption kinetics. The high temperature desorption peak at around 650 K shifted to lower desorption temperature as the exposure of $C_2D_5$OD increased. The Zr(MNV) Auger peak shifted about 2.5 eV from 147 eV to lower electron energy followed by 300 L of $C_2D_5$OD dosing. This implies metallic zirconium was oxidized by deuterized ethanol adsorption. After stepwise annealing of the oxidized Zry-4 sample up to 843 K, the shifted Zr(MNV) peak was gradually shifted back to metallic zirconium peak position. After the sample was heated to 843 K, the oxygen content near the Zry-4 surface was recovered to clean surface level. The concentration of carbon, however, was not recovered by annealing the sample.

The Adsorption and Desorption of $NH_3$ on Rutile $TiO_2(110)-1{\times}1$ Surfaces

  • Kim, Bo-Seong;Li, Zhenjun;Kay, Bruce D.;Dohnalek, Zdenek;Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.265-265
    • /
    • 2012
  • The adsorption of molecular $NH_3$ on rutile $TiO_2(110)-1{\times}1$ surfaces was investigated using a temperature-programmed desorption (TPD) technique combined with a molecular beam apparatus. A quantitative investigation into the TPD spectra of $NH_3$ was made for $NH_3$ adsorbed on two kinds of rutile $TiO_2(110)-1{\times}1$ surfaces with the oxygen vacancy ($V_O$) concentration of ~0% (p-$TiO_2(110)$) and ~5% (r-$TiO_2(110)$), respectively. On both surfaces, non-dissociative adsorption of $NH_3$ was inferred from a quantitative analysis on the amount of adsorbed $NH_3$ and those desorbed. With increasing coverage, the monolayer desorption feature shifted from 400 K toward lower temperatures until it saturates at 160 K, suggesting a repulsive nature in the interaction between $NH_3$ molecules. At the very low coverage regime, the desorption features were found to extend up to 430 K and 400 K on p-$TiO_2(110)$ and p-TiO(110), respectively. As a result, the saturation coverage of monolayer of $NH_3$ was higher on the p-$TiO_2(110)$ surface than on the p-TiO(110) by about 10%. The desorption energy ($E_d$) of $NH_3$ obtained by inversion of the Polanyi-Wigner equation indicated that the difference between the $E_d$'s of $NH_3$ (that is, $E_d(on\;p-TiO_2(110)$) - $E_d$(on p-TiO(110)) was 14 kJ/mol at ${\theta}(NH_3)=0$ and decreased to 0 as the coverage approached to a monolayer. The observed adsorption behavior of $NH_3$ was interpreted using an interaction model between $NH_3$ and surface defects on $TiO_2$ such as VO's and $Ti^{3+}$ interstitials.

  • PDF

Electrical Characteristic Change of Al/Pd Film by Hydrogen Gas (수소 기체에 의한 Al/Pd 박막의 전기 특성 변화)

  • Cho, Young-Sin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.386-390
    • /
    • 2005
  • Al film(135.5 nm thick) with Pd film(39.6 nm thick) on the top of it was made by thermal evaporation method. Electrical resistance change due to hydrogen absorption and desorption was measured by four point measurement method. The sample was activated by hydrogen absorption and desorption cycling at room temp. Hydrogen was introduced into the film by increasing hydrogen gas pressure step by step up to 640 torr at room temp. The resistance change ratio was decreased to 12 % with increasing hydrogen pressure in contrast to normal metal behavior. This strange tendency was not understood yet. Further study is needed to find out the mechanism of hydrogen absorption in Al in Al/Pd film.

A Numerical Investigation of Hydrogen Desorption Reaction for Tritium Delivery from Tritium Storage Based on ZrCo (ZrCo 기반 저장용기로부터 삼중수소 공급을 위한 수소 방출에 대한 수치해석적 연구 (II))

  • Yoo, Haneul;Jo, Arae;Gwak, Geonhui;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • In this paper, a three-dimensional hydrogen desorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 90% hydrogen discharging time. In addition, the performance of thin double-layered annulus bed is evaluated by comparing with a simple cylindrical bed using hydrogen desorption model. This study provides multi-dimensional contours such as temperature and H/M atomic ratio in the metal hydride region. This numerical study provides fundamental understanding during hydrogen desorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen discharging performance. The present three-dimensional hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.

Adsorption/desorption of uranium on iron-bearing soil mineral surface

  • Ha, Seonjin;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.135-142
    • /
    • 2015
  • In this study, we evaluated the adsorption/desorption of uranium (U) in pure soil environment using continuous column reactor. We additionally investigated the adsorption/desorption mechanism of U on vivianite surface in molecular scale using quantum calculation. We observed that below $0.1{\mu}M$ of U was detected after 20 d from U injection ($1{\mu}M$) in adsorption test. However, all of absorbed U was detached from vivianite surface in 24 h by injection of CARB solution ($1.44{\times}10^{-2}M\;NaHCO_3$ and $2.8{\times}10^{-3}M\;Na_2CO_3$). Based on exchange energy calculation, we found that $UO_2(CO_3)_2{^{2-}}$ and $UO_2(CO_3)_3{^{4-}}$ species have higher repulsive energy than $UO_2(OH)_2$ species. The results obtained from this study could be applied to predict the behavior of uranium in contaminated and remediation sites.