DOI QR코드

DOI QR Code

Surface Phenomena of Deuterized Ethanol Exposed Zircaloy-4 Surfaces

  • Park, Ju-Yun (Department of Chemistry, Pukyong National University) ;
  • Jung, Se-Won (Department of Chemistry, Pukyong National University) ;
  • Chun, Mi-Sun (Department of Chemistry, Pukyong National University) ;
  • Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
  • Published : 2009.06.20

Abstract

We report the results of the surface chemistry of deuterized ethanol exposed Zircaloy-4 (Zry-4) surfaces with various amount of $C_2D_5$OD exposures at 190 K. This system was examined with Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) techniques. In TPD study, $D_2$ was evolved at two different desorption temperature regions accompanying with broad desorption background. The lower temperature feature at around 520 K showed first-order desorption kinetics. The high temperature desorption peak at around 650 K shifted to lower desorption temperature as the exposure of $C_2D_5$OD increased. The Zr(MNV) Auger peak shifted about 2.5 eV from 147 eV to lower electron energy followed by 300 L of $C_2D_5$OD dosing. This implies metallic zirconium was oxidized by deuterized ethanol adsorption. After stepwise annealing of the oxidized Zry-4 sample up to 843 K, the shifted Zr(MNV) peak was gradually shifted back to metallic zirconium peak position. After the sample was heated to 843 K, the oxygen content near the Zry-4 surface was recovered to clean surface level. The concentration of carbon, however, was not recovered by annealing the sample.

Keywords

References

  1. Ha, Y. K.; Han, S. H.; Park, S. D.; Park, Y. S.; Kim, W. H. Chemical Interaction between UO$_2$ Fuel and Zircaloy Clad; Korea Atomic Energy Research Institute: Report KAERI/AR-697/2004.
  2. Wilson, P. D. The Nuclear Fuel Cycle: From Ore to Wastes; Oxford University Press: New York, 1996; p 89.
  3. Ravi Shankar, A.; Raju, V. R.; Narayana Rao, M.; Kamachi Mudali, U.; Khatak, H. S.; Raj, B. Corr. Sci. 2007, 49, 3527. https://doi.org/10.1016/j.corsci.2007.03.029
  4. Sundaram, C. V. T. Indian I. Metals 1986, 39, 12.
  5. Yao, M. Y.; Zhou, B. X.; Li, Q.; Liu, W. Q.; Geng, X.; Lu, Y. P. J. Nucl. Mater. 2008, 374, 197. https://doi.org/10.1016/j.jnucmat.2007.08.002
  6. Wan, Q.; Bai, X.; Zhang. X. Mater. Res. Bull. 2006, 41, 387. https://doi.org/10.1016/j.materresbull.2005.08.007
  7. Kim, W.; Jung, K. S.; Choi, B. H.; Kwon, H. S.; Lee, S. J.; Han, J. G.; Guseva, M. I.; Atamanov, M. V. Surf. Coat. Technol. 1995, 76, 595.
  8. Chen, X. W.; Bai, X. D.; Deng, P. Y.; Peng, D. Q.; Chen, B. S. Nucl. Instr. and Meth. B 2003, 211, 512. https://doi.org/10.1016/S0168-583X(03)01518-0
  9. Liu, X.; Bai, X.; Zhou, C.; Wei, L. Surf. Coat. Technol. 2004, 182, 138. https://doi.org/10.1016/j.surfcoat.2003.07.008
  10. Abolhassani, S.; Dadras, M.; Leboeuf, M.; Gavillet, D. J. Nucl. Mater. 2003, 321, 70. https://doi.org/10.1016/S0022-3115(03)00201-0
  11. Bozzano, P. B.; Ipohorski, M.; Versaci, R. A. Acta Microscopica 2004, 13, 47.
  12. Hofmann, P. J. Nucl. Mater. 1999, 270, 194. https://doi.org/10.1016/S0022-3115(98)00899-X
  13. Moulin, G.; El Tahhan, R.; Favergeon, J.; Viennot, M.; Berger, P. Mater. Sci. Forum. 2006, 522-523, 425. https://doi.org/10.4028/www.scientific.net/MSF.522-523.425
  14. Bai, X. D.; Wang, S. G.; Xu, J.; Bao, J.; Chen, H. M.; Fan, Y. D. J. Nucl. Mater. 1998, 254, 266. https://doi.org/10.1016/S0022-3115(97)00346-2
  15. Li, J.; Bai, X.; Zhang, D.; Li, H. Appl. Surf. Sci. 2006, 252, 7436. https://doi.org/10.1016/j.apsusc.2005.08.091
  16. Stojilovic, N.; Ramsier, R. D. J. Nucl. Mater. 2006, 350, 163. https://doi.org/10.1016/j.jnucmat.2005.12.003
  17. Berger, P.; El Tahhann, R.; Moulin, G.; Viennot, M. Nucl. Instr. and Meth. B 2003, 210, 519. https://doi.org/10.1016/S0168-583X(03)01089-9
  18. Takagi, I.; Hashizumi, M.; Yamahami, A.; Maehara, K.; Higashi, K. J. Nucl. Mater. 1997, 248, 306. https://doi.org/10.1016/S0022-3115(97)00159-1
  19. Steinbrück, M. J. Nucl. Mater. 2004, 334, 58. https://doi.org/10.1016/j.jnucmat.2004.05.007
  20. Meyer, G.; Kobrinsky, M.; Abriata, J. P.; Bolcich, J. C. J. Nucl. Mater. 1996, 229, 48. https://doi.org/10.1016/0022-3115(95)00228-6
  21. Gomez, M. P.; Domizzi, G.; Lopez Pumarega, M. I.; Ruzzante, J. E. J. Nucl. Mater. 2006, 353, 167. https://doi.org/10.1016/j.jnucmat.2006.01.024
  22. Kim, S. J.; Kim, K. H.; Baek, J. H.; Choi, B. K.; Jeong, Y. H.; Jung, Y. H. J. Nucl. Mater. 1998, 256, 114. https://doi.org/10.1016/S0022-3115(98)00066-X
  23. Fernandez, G. E.; Meyer, G.; Peretti, H. A. J. Alloys & Compd. 2002, 330, 483. https://doi.org/10.1016/S0925-8388(01)01622-X
  24. Tupin, M.; Pijolat, M.; Valdivieso, F.; Soustelle, M.; Frichet, A.; Barberis, P. J. Nucl. Mater. 2003, 317, 130. https://doi.org/10.1016/S0022-3115(02)01704-X
  25. Kim, J. H.; Lee, M. H.; Choi, B. K.; Jeong, Y. H. J. Nucl. Mater. 2007, 362, 36. https://doi.org/10.1016/j.jnucmat.2006.10.026
  26. Kim, J. H.; Lee, M. H.; Choi, B. K.; Jeong, Y. H. Nucl. Eng. Des. 2005, 235, 67. https://doi.org/10.1016/j.nucengdes.2004.08.030
  27. Stojilovic, N.; Ramsier, R. D. Appl. Surf. Sci. 2006, 252, 5839. https://doi.org/10.1016/j.apsusc.2005.08.006
  28. Park, K. H.; Cho, Y. C.; Kim, Y. G. J. Nucl. Mater. 1999, 270, 154. https://doi.org/10.1016/S0022-3115(98)00903-9
  29. Stojilovic, N.; Ramsier, R. D. Surf. Interface Anal. 2006, 38, 139. https://doi.org/10.1002/sia.2212
  30. Hong, H. S.; Moon, J. S.; Kim, S. J.; Lee, K. S. J. Nucl. Mater. 2001, 297, 113. https://doi.org/10.1016/S0022-3115(01)00601-8
  31. Bai, X.; Xu, J.; He, F.; Fan, Y. Nucl. Instr. and Meth. B 2000, 160, 49. https://doi.org/10.1016/S0168-583X(99)00583-2
  32. Stojilovic, N.; Bender, E. T.; Ramsier, R. D. J. Nucl. Mater. 2006, 348, 79. https://doi.org/10.1016/j.jnucmat.2005.08.022
  33. Sheng, P. Y.; Bowmaker, G. A.; Idriss, H. Appl.Catalysis A; General 2004, 261, 171. https://doi.org/10.1016/j.apcata.2003.10.046
  34. Silva, A. M.; BArandas, A. P. M. G.; Costa, L. O. O.; Borges, L. E. P.; Nattoso, L. V.; Noronga, F. B. Cata. Today 2007, 129, 297. https://doi.org/10.1016/j.cattod.2006.09.036
  35. Barthos, R.; Széchenyi, A.; Koós, A.; Solymosi, F. Appl. Catal. A: Gen. 2007, 327, 95. https://doi.org/10.1016/j.apcata.2007.03.040
  36. Sheng, P. Y.; Chiu, W. W.; Yee, A.; Norrison, S. J.; Idriss, H. Catal. Today 2007, 129, 313. https://doi.org/10.1016/j.cattod.2006.09.040
  37. Kwon, J. H.; Youn, S. W.; Kang, Y. C. Bull. Korean Chem. Soc. 2006, 27, 11.
  38. Oh, K. S.; Kang, Y. C. Bull. Korean Chem. Soc. 2007, 28, 1341. https://doi.org/10.5012/bkcs.2007.28.8.1341
  39. Jung, H. Y.; Kang, Y. C. Bull. Korean Chem. Soc. 2007, 28, 1751. https://doi.org/10.5012/bkcs.2007.28.10.1751
  40. Whitten, J. E.; Gomer, R. Surf. Sci. 1996, 347, 280. https://doi.org/10.1016/0039-6028(95)00987-6
  41. Nakamura, J.; Hirano, H.; Xie, M.; Matsuo, I.; Yamada, T.; Tanaka, K. Surf. Sci. 1989, 222(1,2), L809. https://doi.org/10.1016/0039-6028(89)90328-2
  42. Foord, J. S.; Goddard, P. J.; Lambert, R. M. Surf. Sci. 1980, 94, 339. https://doi.org/10.1016/0039-6028(80)90011-4
  43. Stojilovic, N.; Weber, D. W.; Ramsier, R. D. Appl. Surf. Sci. 2003, 218, 188.
  44. Stojilovic, N.; Farkas, N.; Ramsier, R. D. Appl. Surf. Sci. 2008, 254, 2866. https://doi.org/10.1016/j.apsusc.2007.10.028

Cited by

  1. Synchrotron-based high-resolution photoemission spectroscopy study of ZIRLO cladding with H 2 O adsorption: Coverage and temperature dependence vol.10, pp.None, 2009, https://doi.org/10.1038/s41598-020-63585-5