DOI QR코드

DOI QR Code

Adsorption/desorption of uranium on iron-bearing soil mineral surface

  • Ha, Seonjin (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kyung, Daeseung (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Woojin (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2015.04.28
  • Accepted : 2015.06.30
  • Published : 2015.06.25

Abstract

In this study, we evaluated the adsorption/desorption of uranium (U) in pure soil environment using continuous column reactor. We additionally investigated the adsorption/desorption mechanism of U on vivianite surface in molecular scale using quantum calculation. We observed that below $0.1{\mu}M$ of U was detected after 20 d from U injection ($1{\mu}M$) in adsorption test. However, all of absorbed U was detached from vivianite surface in 24 h by injection of CARB solution ($1.44{\times}10^{-2}M\;NaHCO_3$ and $2.8{\times}10^{-3}M\;Na_2CO_3$). Based on exchange energy calculation, we found that $UO_2(CO_3)_2{^{2-}}$ and $UO_2(CO_3)_3{^{4-}}$ species have higher repulsive energy than $UO_2(OH)_2$ species. The results obtained from this study could be applied to predict the behavior of uranium in contaminated and remediation sites.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Bae, S. and Lee, W. (2012), "Enhanced reductive degradation of carbon tetrachloride by biogenic vivianite and Fe (II)", Geochim. Cosmochim. Acta, 85, 170-186. https://doi.org/10.1016/j.gca.2012.02.023
  2. Behrens, C. and Holt, M. (2005), "Nuclear power plants: Vulnerability to terrorists", Library of Congress Washington DC Congressional Research Service.
  3. Butler, E.C. and Hayes, K.F. (1998), "Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide", Environ. Sci. Technol., 32(9), 1276-1284. https://doi.org/10.1021/es9706864
  4. Carl, B. and Holt, M. (2005), "Nuclear power plants: Vulnerability to terrorists attack", Library of Congress Washington D.C. Congressional Research Service.
  5. Descostes, M., Schlegel, M.L., Eglizaud, N., Descamps, F., Miserque, F. and Simoni, E. (2010), "Uptake of uranium and trace elements in pyrite ($FeS_2$) suspension", Geochim. Cosmochim. Acta, 74(5), 1551-1562. https://doi.org/10.1016/j.gca.2009.12.004
  6. Fiedor, J.N., Bostick, W.D., Jarabek, R.J. and Farrell, J. (1998), "Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy", J. Environ. Sci. Technol., 32(10), 1466-1473. https://doi.org/10.1021/es970385u
  7. Gregory, K.B. and Derek, R.L. (2005), "Remediation and recovery of uranium from contaminated subsurface environments with electrodes", Environ. Sci. Technol., 39(22), 8943-8947. https://doi.org/10.1021/es050457e
  8. Jeon, K.H., Bae, S., Kim, H. and Lee, W. (2015), "Dechlorination mechanism of carbon tetrachloride on the vivianite surface", J. Phys. Chem. A, 119(22), 5714-5722. https://doi.org/10.1021/acs.jpca.5b01885
  9. Johnson, C.M. (2013), "Examination of natural background sources of radioactive noble gases with CTBT significance", Doctoral Dissertation.
  10. Jung, J., Bae, S. and Lee, W. (2012), "Nitrate reduction by maghemite supported Cu-Pd bimetallic catalyst", Appl. Catal. B: Environ., 127, 148-158. https://doi.org/10.1016/j.apcatb.2012.08.017
  11. Kim, E. and Batchelor, B. (2009), "Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite", Environ. Sci. Technol., 43(8), 2899-2904. https://doi.org/10.1021/es803114g
  12. Kriegman-King, M.R. and Reinhard, M. (1994), "Transformation of carbon tetrachloride by pyrite in aqueous solution", Environ. Sci. Technol., 28(4), 692-700. https://doi.org/10.1021/es00053a025
  13. Lee, W. and Batchelor, B. (2002), "Reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite", Environ. Sci. Technol., 36(23), 5147-5154. https://doi.org/10.1021/es025836b
  14. Lee, W., Schlautman, M.A. and Batchelor, B. (2000), "Reductive capacity of soils for chromium", Environ. Technol., 21(8), 953-963. https://doi.org/10.1080/09593332108618058
  15. Noubactep, C., Meinrath, G., Dietrich, P. and Merkel, B. (2003), "Mitigating uranium in groundwater: Prospects and limitations", Environ. Sci. Technol., 37(18), 4304-4308. https://doi.org/10.1021/es034296v
  16. Noubactep, C., Schöner, A. and Meinrath, G. (2006), "Mechanism of uranium removal from the aqueous solution by elemental iron", J. Hazard. Mater., 132(2), 202-212. https://doi.org/10.1016/j.jhazmat.2005.08.047
  17. Riba, O., Scott, T.B., Ragnarsdottir, V. and Allen, G.C. (2008), "Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles", Geochim. Cosmochim. Acta, 72(16), 4047-4057. https://doi.org/10.1016/j.gca.2008.04.041
  18. Roden, E.E., Leonardo, M.R. and Ferris, F.G. (2002), "Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction", Geochim. Cosmochim. Acta, 66(16), 2823-2839. https://doi.org/10.1016/S0016-7037(02)00878-5
  19. Sihn, Y., Bae, S. and Lee, W. (2013), "Formation of surface mediated iron colloids during U (VI) and nZVI interaction", Adv. Environ. Res., Int. J., 2(3), 167-177. https://doi.org/10.12989/aer.2013.2.3.167
  20. Wan, J., Tokunaga, T.K., Brodie, E., Wang, Z., Zheng, Z., Herman, D., Hazen, T.C., Firestone, M.K. and Sutton, S.R. (2005), "Reoxidation of bioreduced uranium under reducing conditions", Environ. Sci. Technol., 39(16), 6162-6169. https://doi.org/10.1021/es048236g
  21. Wersin, P., Hochella Jr, M.F., Persson, P., Redden, G., Leckie, J.O. and Harris, D.W. (1994), "Interaction between aqueous uranium (VI) and sulfide minerals: Spectroscopy evidence for sorption and reduction", Geochim. Cosmochim. Acta, 58(13), 2829-2843. https://doi.org/10.1016/0016-7037(94)90117-1
  22. Zachara, J.M., Fredrickson, J.K., Smith, S.C. and Gassman, P.L. (2001), "Solubilization of Fe(III) oxidebound trace metals by a dissimilatory Fe(III) reducing bacterium", Geochim. Cosmochim. Acta, 65(1), 75-93. https://doi.org/10.1016/S0016-7037(00)00500-7

Cited by

  1. The application of iron-based technologies in uranium remediation: A review vol.575, 2017, https://doi.org/10.1016/j.scitotenv.2016.09.211
  2. vol.121, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/121/2/022014
  3. vol.121, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/121/3/032043