• Title/Summary/Keyword: designed to gravity loads

Search Result 62, Processing Time 0.022 seconds

Diagrid Systems for Structural Design of Complex-Shaped Tall Buildings

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.243-250
    • /
    • 2016
  • Today's architectural design trend based on the recognition of pluralism has led to multiple design directions for all building types including tall buildings. This contemporary design trend has produced many complex-shaped tall buildings, such as twisted, tilted, tapered and freeform towers. Among many different structural systems developed for tall buildings, the diagrid system, with its powerful structural rationale and distinguished aesthetic potential, is one of the most widely used systems for today's tall buildings. This paper studies structural performance of diagrid systems employed for complex-shaped tall buildings. Twisted, tilted, tapered and freeform tall buildings are designed with diagrid structures, and their structural performances are investigated. For the twisted diagrid study, the buildings are twisted up to 3 degrees per floor. In the tilted diagrid study, the angles of tilting range from 0 to 13 degrees. The impact of eccentricity is investigated for gravity as well as lateral loads in tilted towers. In the study of tapered diagrid structures, the angles of tapering range from 0 to 3 degrees. In the study of freeform diagrid structures, lateral stiffness of freeform diagrids is evaluated depending on the degree of fluctuation of free form. The freeform floor plans fluctuate from plus/minus 1.5 meter to plus/minus 4.5 meter boundaries of the original square floor plan. Parametric structural models are generated using appropriate computer programs and the models are exported to structural engineering software for design, analyses and comparative studies.

Behavior of Concrete/Cold Formed Steel Composite Beams: Experimental Development of a Novel Structural System

  • Wehbe, Nadim;Bahmani, Pouria;Wehbe, Alexander
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • The use of light-gauge steel framing in low-rise commercial and industrial building construction has experienced a significant increase in recent years. In such construction, the wall framing is an assembly of cold-formed steel (CFS) studs held between top and bottom CFS tracks. Current construction methods utilize heavy hot-rolled steel sections, such as steel angles or hollow structural section tubes, to transfer the load from the end seats of the floor joist and/or from the load-bearing wall studs of the stories above to the supporting load-bearing wall below. The use of hot rolled steel elements results in significant increase in construction cost and time. Such heavy steel elements would be unnecessary if the concrete slab thickening on top of the CFS wall can be made to act compositely with the CFS track. Composite action can be achieved by attaching stand-off screws to the track and encapsulating the screw shank in the deck concrete. A series of experimental studies were performed on full-scale test specimens representing concrete/CFS flexural elements under gravity loads. The studies were designed to investigate the structural performance of concrete/CFS simple beams and concrete/CFS continuous headers. The results indicate that concrete/CFS composite flexural elements are feasible and their structural behavior can be modeled with reasonable accuracy.

Design of Pile-Guide Mooring System for Offshore LNG Bunkering Terminal: A Case Study for Singapore Port (해상 LNG 벙커링 터미널용 파일 가이드 계류 시스템 설계: 싱가포르 항의 사례 연구)

  • Lee, Seong-yeob;Chang, Daejun
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.379-387
    • /
    • 2017
  • In this study, a pile-guide mooring system (PGMS) was designed for an offshore liquefied natural gas bunkering terminal (LNG-BT), which is an essential infrastructure for large LNG-fuelled ships. The PGMS consisted of guide piles to restrict five motions of the floater, except for heave, as well as a seabed truss structure to support the guide piles and foundation piles to fix the system to the seabed. Singapore port was considered for a case study because it is a highly probable ports for LNG bunkering projects. The wave height, current speed, and wind speed in Singapore port were investigated to calculate the environmental loads acting on the hull and PGMS. A load and resistance factor approach was used for the structural design, and a finite element analysis was performed for design verification. The steel usage of the PGMS was analyzed and compared with the material usage of a gravity-based structure under similar LNG capacity and water depth criteria. This paper also describes the water depth limit and wave conditions of the PGMS based on estimation of the initial investment and the present value profit difference. It suggests a suitable LNG-BT support system for various design conditions.

Full-Scale Shaker Testing of Non-Ductile RC Frame Structure Retrofitted Using High-Strength Near Surface Mounted Rebars and Carbon FRP Sheets (고강도 표면매립용철근과 탄소섬유시트로 보강된 비연성 철근콘크리트 골조의 실물 진동기 실험)

  • Shin, Jiuk;Jeon, Jong-Su;Wright, Timothy R.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.

Seismic Collapse Risk for Non-Ductile Reinforced Concrete Buildings According to Seismic Design Categories (비연성 철근콘크리트 건물의 내진설계범주에 따른 붕괴 위험성 평가)

  • Kim, Minji;Han, Sang Whan;Kim, Taeo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.161-168
    • /
    • 2021
  • Existing old reinforced concrete buildings could be vulnerable to earthquakes because they were constructed without satisfying seismic design and detail requirements. In current seismic design standards, the target collapse probability for a given Maximum Considered Earthquake (MCE) ground-shaking hazard is defined as 10% for ordinary buildings. This study aims to estimate the collapse probabilities of a three-story, old, reinforced concrete building designed by only considering gravity loads. Four different seismic design categories (SDC), A, B, C, and D, are considered. This study reveals that the RC building located in the SDC A region satisfies the target collapse probability. However, buildings located in SDC B, C, and D regions do not meet the target collapse probability. Since the degree of exceedance of the target probability increases with an increase in the SDC level, it is imminent to retrofit non-ductile RC buildings similar to the model building. It can be confirmed that repair and reinforcement of old reinforced concrete buildings are required.

Seismic Response Analysis of Twisted Buildings with Three Planar Shapes (세 가지 평면 형상에 따른 비틀림 비정형 빌딩구조물의 지진응답 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, a twisted shape structure with an elevation form favorable to the resistance of vibration caused by wind loads is selected from among the forms of high-rise buildings. The analytical model is a square, triangular, and hexagonal plane with a plane rotation angle of one degree from 0 to 3 degrees per each story. As a result of the analysis, as the twist angle increased, story drift ratio is increased. Responses with different eccentricity rates were shown by analytical models. Therefore planar shapes designed symmetrically to the horizontal axis of X and Y are considered advantageous for eccentricity and torsion deformation. In the case of the bending moment of the column, the response was amplified in the column supporting the base floor, the roof floor, the floor in which the cross-section of the vertical member changes, and the floor having the same number of nodes as the base floor. Finally, the axial force response of the column is determined to be absolutely affected by the gravity load compared to the lateral load.

Outrigger Systems for Structural Design of Complex-Shaped Tall Buildings

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • Today's architecture can be best understood only through the recognition of pluralism, and, as is true of other building types, multiple design directions are prevalent for tall buildings. This contemporary design trend has produced many complex-shaped tall buildings, such as twisted, tilted and tapered form towers. Among many different structural systems developed for tall buildings, the outrigger system, with its inherent structural efficiency and flexibility in façade design, is widely used for contemporary tall buildings. This paper studies structural performance of outrigger systems employed for complex-shaped tall buildings. Twisted, tilted and tapered tall buildings are designed with outrigger structures, and their structural performance is investigated. For the twisted outrigger study, the buildings are twisted up to 3 degrees per floor. In the tilted outrigger study, the angles of tilting range from 0 to 13 degrees. The impact of eccentricity is investigated for gravity as well as lateral loads in tilted towers. In the study of tapered outrigger structures, the angles of tapering range from 0 to 3 degrees. Parametric structural models are generated using appropriate computer programs for these studies, and the models are exported to structural engineering software for design and analyses.

Structural Performance Enhancement of Seismic Retrofitted Column Using New Reinforcing Materials (신보강재로 보수 보강한 기둥의 구조 성능 개선)

  • Oh, Chang-Hak;Han, Sang-Whan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • Reinforced concrete frame buildings in regions of low to moderate seismicity are typically designed only for gravity loads with non-seismic detailing provisions of the code. These buildings possess strong beam-weak column, which brings about the brittle structural performance like the column sidesway failure mechanism during the strong lateral load. The objective of this paper is to enhance the column strength and deformation capacity for reconfiguring the structural failure mode by averting a column soft-story collapse and moving to a more ductile beam-sides way mechanism suing new reinforcing materials. Aramid fiber sheet and reinforcing rod-composite materials was used for this purpose. The column was modeled by the 2/3 scale experimental specimen retested. According to the concept of the capacity design, the damaged column was strengthened by the column jacketing using new reinfocing materials such as rod-composite materials. In conclusion, the improvement of the flexural strength is observed and the capacity of the energy dissipation and the ductility is enhanced, too.

  • PDF

Overstrength and Response Modification Factor in Low Seismicity Regions (약진지역에서의 초과강도 및 반응수정계수)

  • Lee, Dong-Guen;Cho, So-Hoon;Ko, Hyun;Kim, Tae-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.57-64
    • /
    • 2006
  • Seismic design codes are mainly based on the research results for the inelastic response of structures in high seismicity regions. Since wind loads and gravity loads may govern the design in low seismicity regions in many cases, structures subjected to design seismic loads will have larger overstrength compared to those of high seismicity regions. Therefore, it is necessary to verify if the response modification factor based on high seismicity would be adequate for the design of structures in low seismicity regions. In this study, the adequacy of the response modification factor was verified based on the ductility and overstrength of building structures estimated from the result of nonlinear static analysis. Framed structures are designed for the seismic zones 1, 2A, 4 in UBC-97 representing the low, moderated and high seismicity regions and the overstrength factors and ductility demands of the example structures are investigated. When the same response modification factor was used in the design, inelastic response of structures in low seismicity regions turned out to be much smaller than that in high seismicity regions because of the larger overstrength of structures in low seismicity regions. Demands of plastic rotation in connections and ductility in members were much lower in the low seismicity regions compared to those of the high seismicity regions when the structures are designed with the same response modification factor.

Numerical simulation of the experimental results of a RC frame retrofitted with RC Infill walls

  • Kyriakides, Nicholas;Chrysostomou, Christis Z.;Kotronis, Panagiotis;Georgiou, Elpida;Roussis, Panayiotis
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.735-752
    • /
    • 2015
  • The effectiveness of seismic retrofitting of RC-frame buildings by converting selected bays into new walls through infilling with RC walls was studied experimentally using a full-scale four-storey model tested with the pseudo-dynamic (PsD) method. The frames were designed and detailed for gravity loads only using different connection details between the walls and the bounding frame. In order to simulate the experimental response, two numerical models were formulated differing at the level of modelling. The purpose of this paper is to illustrate the capabilities of these models to simulate the experimental nonlinear behaviour of the tested RC building strengthened with RC infill walls and comment on their effectiveness. The comparison between the capacity, in terms of peak ground acceleration, of the strengthened frame and the one of the bare frame, which was obtained numerically, has shown a five-fold increase.