• Title/Summary/Keyword: design spectra

Search Result 389, Processing Time 0.029 seconds

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

Wind design spectra for generalisation

  • Martinez-Vazquez, P
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.155-163
    • /
    • 2020
  • Previous research has shown that wind acceleration components produce a signal that can vibrate single-degree of-freedom oscillators, whose dynamic responses enable to configure design spectra for structures subject to wind. These wind design spectra present an alternative method for evaluating the dynamic response of structures and are a suitable tool for running modal analyses. Here, a generalised method for producing wind design spectra is proposed. The method consists of scaling existing spectra to adjust to a wider range of building properties and terrain conditions. The modelling technique is tested on a benchmark building to prove that its results are consistent with experimental evidence reported in the past.

A Study on the Damping Correction Factors for the Korean Standard Design Spectrum (한국 표준설계스펙트럼의 감쇠보정계수에 대한 연구)

  • Heo, Tae Min;Kim, Jung Han;Lee, Jin Ho;Kim, Jae Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • In this study, we develop and propose damping correction factors for the Korean standard design spectra. The newly proposed Korean standard design spectra has been given only for 5% damping ratio. But in practice, engineers need design spectra for damping values other than 5%. To obtain design spectra for various damping values from the standard spectra, damping correction factors are derived. These factors modify the shape of design spectra in accordance with the damping ratio. Response spectra for various damping values are calculated from the earthquake records that had been used to calculate standard design spectra. They consist of 55 records from 18 earthquakes occurred in overseas intraplate regions and Korea. The regressed spectra for the damping values ranging from 0.5% to 50 % are compared with standard spectra at three regions acceleration, velocity and displacement sensitive regions. The regression analysis of these data rendered formula for damping correction factors. Finally, a single formula for damping correction factors is recommended that is valid for both horizontal and vertical design spectra and that is applicable to the entire range of periods. One thing to note that recommended damping correction factors is valid for the design spectrum of the rock grounds because the design spectra was developed based on the earthquake records of the rock ground.

Response Spectra of 2017 Pohang Earthquake and Comparison with Korean Standard Design Spectra (2017년 포항지진 스펙트럼과 한국표준설계스펙트럼의 비교)

  • Heo, Tae Min;Kim, Jung Han;Lee, Jin Ho;Kim, Jae Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.129-137
    • /
    • 2018
  • On November 15, 2017, Pohang earthquake occurred. Its local magnitude was announced to be $M_L=5.4$ by Korea Meteorological Administration (KMA). Ground motion data recorded at KMA stations were obtained from their data bases. From the data, horizontal and vertical response spectra, and V/H ratio were calculated. The horizontal spectra were defined as GMRotI50 spectra. From the statistical analysis of the GMRotI50 spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. Applying the same procedure, the shape and transition periods of vertical spectrum were obtained. These results were compared with theKorean standard design spectra, which were developed from domestic and overseas intra-plate earthquake records, and Gyeongju earthquake response spectra. The response spectra of Pohang earthquake were found to be almost identical with the newly proposed design spectra. Even the V/H ratios showed good agreement. These results confirmed that the method adopted when developing the standard design spectra were valid and the developed design spectra were reliable.

Evaluation of EC8 and TBEC design response spectra applied at a region in Turkey

  • Yusuf Guzel;Fidan Guzel
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.199-208
    • /
    • 2023
  • Seismic performance analysis is one of the fundamental steps in the design of new or retrofitting buildings. In the seismic performance analysis, the adapted spectral acceleration curve for a given site mainly governs the seismic behavior of buildings. Since every soil site (class) has a different impact on the spectral accelerations of input motions, different spectral acceleration curves have to be involved for every soil class that the building is located on top of. Modern seismic design codes (e.g., Eurocode 8, EC8, or Turkish Building Earthquake Code, TBEC) provide design response spectra for all the soil classes to be used in the building design or retrofitting. This research aims to evaluate the EC8 and TBEC based design response spectra using the spectra of real earthquake input motions that occurred (and were recorded at only soil classes A, B and C, no recording is available at soil class D) in a specific area in Turkey. It also conducts response spectrum analyses of 5, 10 and 13 floor reinforced concrete building models under EC8, TBEC and actual spectral response curves. The results indicate that the EC8 and especially TBEC given design response spectra cannot be able to represent the mean actual spectral acceleration curves at soil classes A, B and C. This is particularly observed at periods higher than 0.3 s, 0.42 s and 0.55 s for the TBEC design response spectra, 0.54 s, 0.65 s and 0.84 s for the EC8 design response spectra at soil classes A, B and C, respectively. This is also reflected to the shear forces of three building models, as actual spectral acceleration curves lead to the highest shear forces, followed by the shear forces obtained from EC8 and, then, the TBEC design response spectra.

Response Spectra of 2016 Gyeongju Earthquake and Comparison with Korean Standard Design Spectra (2016년 경주지진 스펙트럼과 한국표준설계스펙트럼의 비교)

  • Kim, Jae Kwan;Kim, Jung Han;Lee, Jin Ho;Heo, Tae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.277-286
    • /
    • 2017
  • On September 12, 2016, Gyeongju earthquake occurred. Its local magnitude was announced to be $M_L=5.8$ by Korea Meteorological Administration (KMA). Ground motion data recorded at KMA, EMC and KERC stations was obtained from their data bases. From the data, horizontal and vertical response spectra, and V/H ratio were calculated. The horizontal spectrum was defined as geometric mean spectrum, GMRotI50. From the statistical analysis of the geometric mean spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. Applying the same procedure, the shape and transition periods of vertical spectrum was obtained. These results were compared with the Korean standard design spectra, which were developed from domestic and overseas intraplate earthquake records. The response spectra of Gyeongju earthquake were found to be almost identical with the newly proposed design spectra. Even the V/H ratios showed good agreement. These results confirmed that the method adopted when developing the standard design spectra were valid and the developed design spectra were reliable.

Effect of Hysteretic Models on the Inelastic Design Spectra (비탄성 설계 스펙트럼에 의한 이력 모델의 효과)

  • 한상환;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.214-224
    • /
    • 1999
  • The design response spectrum has been widely used in seismic design to estimate force and deformation demands of structures imposed by Earthquake Ground Motion (EQGM). Inelastic Design Response Spectra (IDRS) to specify design yielding strength in seismic codes are obtained by reducing the ordinates of Linear Elastic Design Response Spectrum (LEDRS) by strength reduction factor (R). Since a building is designed using reduced design spectrum (IDRS) rather than LEDRS in current seismic design procedures it allows structures behave inelastically during design level EQGM. Inelastic Response Spectra (IRS) depend not only on the characteristics of the expected ground motion at a given site, but also on the dynamic properties and nonlinear characteristics of a structure. However, it has not been explicitly investigated the effect of different hysteretic models on IRS. In this study, the effect of hysteretic models on IRS is investigated.

  • PDF

Site Classification and Design Response Spectra for Seismic Code Provisions - (III) Verification (내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (III) 검증)

  • Cho, Hyung Ik;Satish, Manandhar;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.257-268
    • /
    • 2016
  • In the companion papers (I, II), site-specific response analyses were performed at more than 300 domestic sites and a new site classification system and design response spectra (DRS) were proposed using the results of the site-specific response analyses. In this paper, the proposed site classification system and the design response spectra are compared with those in other seismic codes and verified by different methods. Firstly, the design response spectra are compared with the design response spectra in Eurocode 8, KBC 2016 and MOCT 1997 to estimate quantitative differences and general trends. Secondly, site-specific response analyses are carried out using $V_S$-profiles obtained using field seismic tests and the results are compared with the proposed DRS in order to reduce the uncertainty in using the SPT-N value in site-specific response analyses in the companion paper (I). In addition, site coefficients from real earthquake records measured in Korean peninsula are used to compare with the proposed site coefficients. Finally, dynamic centrifuge tests are also performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics. The overall results showed that the proposed site classification system and design response spectra reasonably represented the site amplification characteristic of shallow bedrock condition in Korea.

Development of the Damping Coefficients for Weak and Moderate Earthquake Ground Motions

  • Kim, Myeong-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • Most of seismic design code provisions provide the design response spectra for defining design earthquake ground motions. The design spectra in the code provisions generally come under the 5% of critical damping value, which corresponds to the responses of common structure under the design earthquake. Energy dissipation devices and seismic isolation systems became more popular and the design response spectra at higher damping levels are required. Damping coefficients can be effectively used in conversion of 5%-damped design spectra into other damping levels. These coefficients in the current seismic design code provisions are based on the strong ground motion records. Since the weak and moderate earthquake data have different characteristics from those of strong earthquake data, the application of these coefficients should be investigated in the weak and moderate earthquakes zones. In this study, damping coefficients based on the weak and moderate ground motions were developed and compared to those of current seismic design code provisions.

A Study on the Applicatin of Design Response Spectrum to a Specific Soil Profile (특정지반에 적용할 설계응답스펙트럼에 대한 고찰)

  • 박형기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.91-99
    • /
    • 2001
  • This paper is for a reasonable selection of design response spectra for the seismic design of specific types of soil-structure interaction systems, e.g., underground structure within flexible soil profiles of structures on the shallow soil layers on the stiff bed rock. the existing backup data used for determining the design response spectra of the Code have been investigated and evaluated. For this purpose, various types of free field analyses have been performed using one-dimensional wave propagation theory considering the nonlinear properties of the soil profile. As a result, a reasonable approach of determining input response spectra for specific soil profiles has been proposed to be compatible to the design response spectra of the Code.

  • PDF