• 제목/요약/키워드: design resistance

검색결과 3,744건 처리시간 0.027초

말뚝기초의 국제적 설계기준에 관한 고찰 (Study on International Code of Practice for Pile Foundation)

  • 윤길림;권오순;차재선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 말뚝기초위원회 워크샵
    • /
    • pp.35-52
    • /
    • 1999
  • This paper addresses on new codes of practice, limit state design; load resistance factored design and Eurocode 7, which have recently been adopted by foundation engineers in North America and European Communities. A brief description of the limit state design concepts and some introductions to Australia and Sweden national code for pile foundation are made on behalf of pile capacity determination. Also, simple closed form solution for rational resistance factor when resistance is log-normally distributed, has been derived for pile foundation.

  • PDF

현장타설말뚝의 주면지지력 저항계수 산정 (Determination of Resistance Factors for Drilled Shaft Based on Load Test)

  • 김석중;정성준;권오성;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.427-434
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions, by comparison most of bedrocks in Korea are weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety(FOS) were selected as 3.0, the target reliability index($\beta_c$) were evaluated about 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factor for dead load and live load are evaluated approximately 1.25 and 1.75 respectively. However, when the target reliability are considered as 3.0, the resistance factors are evaluated as approximately 50% of results when the target reliability index were 2.0.

  • PDF

말뚝기초의 연적 방향 극한하중

  • 김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 기초기술위원회 워크샵
    • /
    • pp.209-236
    • /
    • 2002
  • Ultimate pile capacity - Point resistance - Frictional resistance - Determination of point and frictional resistances from field tests - Summary of recommendations from design Group effects Settlement analysis.

  • PDF

Estimation of load and resistance factors based on the fourth moment method

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Ang, Alfredo H.S.
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.19-36
    • /
    • 2010
  • The load and resistance factors are generally obtained using the First Order Reliability Method (FORM), in which the design point should be determined and derivative-based iterations have to be used. In this paper, a simple method for estimating the load and resistance factors using the first four moments of the basic random variables is proposed and a simple formula for the target mean resistance is also proposed to avoid iteration computation. Unlike the currently used method, the load and resistance factors can be determined using the proposed method even when the probability density functions (PDFs) of the basic random variables are not available. Moreover, the proposed method does not need either the iterative computation of derivatives or any design points. Thus, the present method provides a more convenient and effective way to estimate the load and resistance factors in practical engineering. Numerical examples are presented to demonstrate the advantages of the proposed fourth moment method for determining the load and resistance factors.

콘크리트 도로교 설계를 위한 저항계수 체계별 신뢰도 분석 (Reliability Analysis of Concrete Road Bridge Designed with Different Resistance Factor Format)

  • 백인열;상희정
    • 한국도로학회논문집
    • /
    • 제13권2호
    • /
    • pp.147-157
    • /
    • 2011
  • 본 연구는 국내 콘크리트교량설계기준에 신뢰도기반 저항계수를 적용하기 위한 기초 연구로, 구조물의 설계강도를 산정하기 위하여 사용하는 저항계수체계에 따른 설계결과와 신뢰도지수를 비교분석하는 연구를 수행하였다. 현재 국내에서 적용하는 단면저항계수 및 유럽에서 사용하는 재료저항계수를 적용하여 콘크리트 빔 교량들에 대하여 동일한 설계를 수행한 결과를 비교분석하였다. 콘크리트 구조의 강도를 산정하는데 관련된 재료, 치수 및 해석의 불확실성을 고려하여 설계의 안전율인 신뢰도지수를 산정하고, 신뢰도지수에 큰 영향을 미치는 설계변수에 대한 민감도 분석을 수행하였다. 휨강도와 전단강도에 대하여 설계를 수행하였으며, 현행 국내 도로교설계기준, 미국 AASHTO LRFD, 유럽 Eurocode의 저항계수를 적용한 결과 국내 기준의 저항계수에 따른 설계의 신뢰도지수가 가장 컸으며, 활하중의 통계분포 형식에 따라 신뢰도지수에 차이가 있음을 보였다. 콘크리트 보의 휨과 전단에 대한 신뢰도지수에 미치는 영향은 철근의 항복강도와 활하중이 가장 큼을 민감도 분석결과를 통하여 알 수 있었다.

순차적 설계기법에 의한 DWT 75,000 정유운반선의 선형설계 (Stepwise Hull Form Design of DWT 75,000 Product Oil Carrier)

  • 박연석;박세라;정요한;최정규;유재훈
    • 대한조선학회논문집
    • /
    • 제53권6호
    • /
    • pp.456-464
    • /
    • 2016
  • To design the modified hull form with relatively unfavorable dimensions and constraints than the parent ship the stepwise design was applied. In each design step the resistance characteristics was estimated by numerical calculations using CFD programs as Wavis 1.4, Wavis 2.1 and Fluent 12.1. The wave profiles along hull surface by potential flow calculations were investigated to improve wave resistance by modifying the bow shapes. To improve the stern shapes with a point of viscous form resistance the pressure distributions on hull surface and the limiting streamlines are investigated by viscous flow calculations. The design objectives such as shortening the LBP, enlarging the propeller tip clearance, moving forward of the LCB location and increasing the displacement were applied by stepwise to develop the new hull form of DWT 75,000 product oil carrier. Finally a new hull form was developed without the resistance performance loss compared with the parent ship.

케이블교량의 부재 설계를 지배하는 하중조합에 대한 신뢰도지수 평가 (Evaluation of Reliability Index of Governing Load Combination for Design of Cable Supported Bridge Members)

  • 백인열;윤태용
    • 한국전산구조공학회논문집
    • /
    • 제27권6호
    • /
    • pp.643-651
    • /
    • 2014
  • 이 논문에서는 케이블교량 설계기준의 설계하중조합에 대한 신뢰도분석을 수행하였다. 설계기준에서 정의한 하중계수와 저항계수를 적용하여 설계된 실제 케이블교량을 대상으로 주 부재별 통계특성과 설계지배 하중조합을 분석하였다. 신뢰도분석을 통하여 하중조합별로 설정된 목표신뢰도지수를 확보됨을 확인하였고, 교량의 중요도를 상향할 수 있는 저항수정계수의 적용성을 검토하였다. 설계변수들이 신뢰도지수에 미치는 민감도 분석을 통하여 케이블의 신뢰도에 중요한 영향을 주는 요소를 분석하였다. 이를 통하여 설계기준의 안전계수들을 적용한 설계를 통하여 케이블교량의 목표신뢰도지수를 확보할 수 있음을 확인하였다.

선박의 파랑 중 운항성능을 고려한 초기 선형설계에 대한 연구 (Study on Ship Performance in a Seaway for Application to Early Stage of Hull-Form Design)

  • 정유원;김용환;박동민
    • 대한조선학회논문집
    • /
    • 제54권3호
    • /
    • pp.171-186
    • /
    • 2017
  • This paper introduces a study on ship performance in waves to consider the effects of added resistance in the early stage of hull-form design. A ship experiences a loss of speed in actual seaways, hence this study proposes the overall procedure of a new design concept that takes into account the hydrodynamic performance of ship in waves. In the procedure, the added resistance is predicted using numerical methods: slender-body theory and Maruo's far-field formulation, since these methods are efficient in initial design stage, and an empirical formula is adopted for short waves. As computational models, KVLCC2 hull and Supramax bulk carrier are considered, and the results of added resistance and weather factor for test models are discussed. The computational results of vertical motion response and added resistance of KVLCC2 hull are compared with the experimental data. In addition, the sensitivity analysis of added resistance and weather factor for KVLCC2 hull to the variations of ship dimensions are conducted, and the change of the added resistance and propulsion factors after hull form variations are discussed.

감압용 배수탱크내의 분기형 증기분사기의 유동특성에 관한 연구 (A Study on Flow Characteristics of Branch Type Sparger in Drain Tank for Depressurization)

  • 김광추;박만흥;박경석
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.356-367
    • /
    • 2001
  • A numerical analysis on branch type sparger in drain tank for depressurization is performed to investigate the flow characteristics due to the change of design factor. As the result of this study, sparger\\`s flow resistance coefficient(K) is 3.53 at the present design condition when engineering margin for surface roughness is considered as 20%, and flow ratio into branch pipe ($Q_s/Q_i$) is 0.41. The correlation for calculating flow resistance coefficients as design factor is presented. Flow resistance coefficient is increased as section area ratio of branch pipe for main pipe and outlet nozzle diameter of main pipe decreasing, but the effects of branch angle and inlet flow rate of main pipe are small. As the change rate of ($Q_s/Q_i$)becomes larger, the change rate of flow resistance coefficient increases. The rate of pressure loss has the largest change as section area ratio changing. The condition of maximum flow resistance in sparger is when the outlet nozzle diameter ratio of main pipe ($D_e/D_i$) is 0.167, the section area ratio ($A_s/A_i$) is 0.1 and the branch angle ($\alpha$) is 55^{\circ}$.

  • PDF

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.