• Title/Summary/Keyword: design process framework

Search Result 846, Processing Time 0.033 seconds

Product Development Class using Product Data Management Software and 3D Printing (PDM 소프트웨어와 3D 프린팅을 활용한 제품개발 수업 운영 사례)

  • Do, Namchul
    • Journal of Engineering Education Research
    • /
    • v.21 no.6
    • /
    • pp.90-98
    • /
    • 2018
  • This paper proposes a framework of engineering education for product development processes based on product data management (PDM) software and 3D printing. The PDM software supports the product development process-oriented educational coursework, collaborative team projects and project-based learning environment. The 3D printing supports the prototyping step in the product development process and helps participants consider physical realization of their designs during the product design and development phases. The framework was implemented in an introductory course for engineering students to product design and development, and author found that it is important to support rich communication among participants including lecturers, teaching assistants and students to enhance the quality of education and to overcome the burden of learning various computer-aided tools and 3D printing techniques needed for the framework.

Missile Configuration Design and Optimization Using MDO Framework (MDO 프레임워크를 이용한 유도무기 최적 형상 설계)

  • Lee Seung-Jin;Kim Woo-Hyun;Lee Jae-Woo;Lee Chang-Hyuk;Kim Sang-Ho;Hwang Sung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.343-346
    • /
    • 2006
  • In this study, optimization process is constructed for developing missile MDO framework. The analysis tools which are integrated in the missile MDO framework and data flow between analysis tools are investigated. Using analyzed results, the optimal design scenario is constructed. Then to verify optimal design scenario, missile design problem is made and performed.

  • PDF

A Framework of Function Analysis for the Construction Robotics Design

  • Yi, Chang-Yong;Park, Young-Jun;Park, Jin-Young;Park, Chan-Young;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.370-374
    • /
    • 2022
  • Construction is a labor-intensive industry that heavily relies on skilled construction workers. However, the aging of the workforce is rapidly growing, and the shortage of skilled workers is intensifying. The application of construction robotics technology can solve the problem of workforce shortage and guarantee construction productivity, safety, and quality improvement. This study presents a framework of the functional analysis for construction processes and work tasks that classifies and analyzes processes and work tasks for construction robotics design. The framework presents the functional analysis process, which analyzes workers' attributes and identifies functions of construction robotics.

  • PDF

An Air Defence M&S Architecture Design Framework for a Reusability (재사용을 위한 방공 M&S 아키텍처 설계 프레임워크)

  • Yun, Keunho;Shim, Shinwoo;Hwang, Jongsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-662
    • /
    • 2014
  • In the development of the weapon systems, utilization of Modeling & Simulation is growing in every aspect of development process. For the higher utilization of M&S, reuse of the M&S resources is needed to reduce the cost of M&S. I propose the M&S architecture framework that can enhance the reusability of the M&S resources in developing surface-to-air weapon systems. This M&S architecture design framework enables interoperability between the system and sub-systems. In this paper, the advantage and the necessity of the M&S architecture design framework will be described by introducing the cases that the M&S architecture framework reused in the combat experiments, the system development tests, the system operational tests and the concept developments in real projects. These cases will show the high reusability and efficiency of the M&S architecture design framework.

FEED Framework Development for Designing Supercritical Carbon Dioxide Power Generation System (초임계 이산화탄소 발전시스템 설계를 위한 FEED(Front End Engineering Design) 프레임워크 개발)

  • Kim, Joon-Young;Cha, Jae-Min;Park, Sungho;Yeom, Choongsub
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.65-74
    • /
    • 2017
  • Supercritical carbon dioxide power system is the next generation electricity technology expected to be highly developed. The power system can improve net efficiency, simplify cycle configuration, and downsize equipment compared to conventional steam power system. In order to dominate the new market in advance, it is required to found Front End Engineering Design (FEED) Framework of the system. Therefore, this study developed the FEED framework including design processes for the supercritical carbon dioxide power system, information elements for each process, and relationships for each element. The developed FEED framework is expected to be able to secure systematic technological capabilities by establishing a common understanding and perspective among multi-field engineers participating in the design.

Web-base integrated BPM system framework for the new product development of automotive suppliers (자동차 부품업체를 위한 웹 기반 통합 신제품 개발 BPM 시스템 Framework)

  • 유석규;최병규;황현철;사공극
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.34-37
    • /
    • 2003
  • This paper proposes a BPM(Business Process Management) system framework for the NPD(New Product Development) of automotive suppliers. Recently many enterprises change their organization from function-oriented to process-oriented through BPR (Business Process Reengineering). Especially, based on quality systems like QS9000, it is required to documented business processes and continuously improve these processes for customer satisfaction. NPD, the most significant function for industrial competition, is reinforced by the best practices business process to satisfy the requirements of quality systems. The main objective of the paper is the development of the information system that supports the best practices process management. For this, first, we define the requirements of BPM system for NPD based on the viewpoint analysis, and then propose a DES (Design Execution System) framework based on dynamic workflow engine. The DES is addressed in the characteristics of a NPD business process, integrated project management, and process execution. A prototype DES system has been developed in the web environment. Its validity is demonstrated by applying it to an automotive supplier.

  • PDF

A Study on Improvement of Nuclear Power Plant Construction System According to Data-centric Design Technique Introduction in Korea (데이터 기반 설계기법 도입에 따른 원전 건설관리체계 개선방향 고찰)

  • Lim, ByungKi;Byon, Sujin
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.108-112
    • /
    • 2016
  • This study is established the data-centric design concept, which is the latest design technique, by analyzing existing study literature for its application on the nuclear power plant industry in Korea. This study investigated the data-centric design cases in the advanced companies and suggests a data-centric design integrated system framework by analyzing the major functions of the commercial 3D CAD system, which is globally used in the plant architect engineering. In order to apply the data-centric design integrated system framework to the nuclear power plant industry in Korea, the main functions of a nuclear power plant design information integrated system framework, which can manage the design products of each EPC step and the related information in integrated way, is suggested by analyzing the supplier design, field design process and field design drawings, which have close relation with the plant Architect Engineering (A/E). It is expected that the result of this study would contribute in the dramatic enhancement in the job efficiency of nuclear power plant design process in Korea.

A Design for Six Sigma: A Robust Tool in Systems Engineering Process

  • Yoon, Hee-Kweon;Byun, Jai-Hyun
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.346-352
    • /
    • 2012
  • While systems engineering has been widely applied to complex system development, some evidences are reported about major budget and schedule overruns in systems engineering applied. On the other hand, many organizations have been deploying Design for Six Sigma (DFSS) to build Six Sigma momentums in the area of design and development for their products and processes. To explore the possibility of having a DFSS complement systems engineering process, this process reviews the systems engineering with their categories of effort and DFSS with its methodologies. A comparison of the systems engineering process and DFSS indicates that DFSS can be a complement to systems engineering for delivering higher quality products to customers faster at a lower cost. We suggest a simplified framework of systems engineering process, that is, PADOV which was derived from the generic systems engineering process which has been applied to the development of T-50 advanced supersonic trainer aircraft by Korea Aerospace Industries (KAI) with technical assistance of Lockheed Martin. We demonstrated that each phase of PADOV framework is comprehensively matched to the pertinent categories of systems engineering effort from various standards.

A Design Decision Support Framework for Evaluation of Design Options in Passenger Ship Engine Room (여객선 기관실의 설계 옵션 평가를 위한 결정 지원 프레임 워크)

  • Kim, Soo Woong
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.9-19
    • /
    • 2011
  • Most real world design evaluation and risk-based decision support combine quantitative and qualitative (linguistic) variables. Decision making based on conventional mathematics that combines qualitative and quantitative concepts always exhibit difficulty in modelling actual problems. The successful selection process for choosing a design/procurement proposal is based on a high degree of technical integrity, safety levels and low costs in construction, corrective measures, maintenance, operation, inspection and preventive measures. In this paper, a design decision support framework using a composite structure methodology grounded in approximate reasoning approach and evidential reasoning method is suggested for design evaluation of machinery space of a ship engine room at the initial stages. An illustrative example is used to demonstrate the application of the proposed framework.