• Title/Summary/Keyword: design of the experiments

Search Result 6,445, Processing Time 0.032 seconds

Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Space (직교배열표를 이용한 이산공간에서의 최적화 알고리즘 개발)

  • Yi, Jeong-Wook;Park, Joon-Seong;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.408-413
    • /
    • 2001
  • The structural optimization is carried out in the continuous design space or discrete design space. Methods for discrete variables such as genetic algorithms are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete design space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions for constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

  • PDF

Optimum Design based on Sequential Design of Experiments and Artificial Neural Network for Heat Resistant Characteristics Enhancement in Front Pillar Trim (프런트 필라 트림의 내열특성 향상을 위한 순차적 실험계획법과 인공신경망 기반의 최적설계)

  • Lee, Jung Hwan;Suh, Myung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1079-1086
    • /
    • 2013
  • Optimal mount position of a front pillar trim considering heat resistant characteristics can be determined by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). Generally, approximated optimum results are obtained through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network (ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently.

Suspension Parameter Design Using a Desingn of Experiments (실험계획법을 이용한 현가장치의 요소설계)

  • 김상중;박찬종;박태원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.16-27
    • /
    • 1996
  • Using computer in design is a trend in recent years. A good suspension model is depend on the carefully prepared data like joint connection points or spring stiffness, etc. Once a good computer model is obtained, a parametric study for spciffic suspension design factor, like a toe angle, can be done to obtain sensitivity information. Using this information, several important design parameters for a specific design factor can be identified. Once a design of experiments is done using computer models, the results can be used to approximate a function which can best represent the experimentation. An optimum solution of this function can be used to find an optimum design of a suspension system for a specific suspension design factor. Same method is again applied to other design factors iteratively until a good suspension system design is obtained.

  • PDF

Optimal Design of Shock Absorber using High Speed Stability (고속 안정성을 고려한 쇽업소버 최적 설계)

  • 이광기;모종운;양욱진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 1998
  • In order to solve the conflict problem between the ride comfort and the road holding, the optimal design of shock absorber that minimizes the r.m.s. of sprung mass vertical acceleration and pitch rate with the understeer characteristics constraints in the high speed stability is proposed. The design of experiments and the nonlinear optimization algorithm are used together to obtain the optimal design of shock absorber. The second order regression models of the input variables(front and rear damping coefficients) and the output variables (ride comfort index and road holding one) are obtained by the central composite design in the design of experiments. Then the optimal design of shock absorber can be systematically adjusted with applying the nonlinear optimization algorithm to the obtained second order regression model. The frequency response analysis of sprung mass acceleration and pitch rate shows the effectiveness of the proposed optimal design of shock absorber in the sprung mass resonance range with the understeer characteristics constraints.

  • PDF

Optimization of a Gate Valve using Design of Experiments and the Kriging Based Approximation Model (실험계획법과 크리깅 근사모델에 의한 게이트밸브 최적화)

  • Kang, Jung-Ho;Kang, Jin;Park, Young-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.125-131
    • /
    • 2005
  • The purpose of this study is an optimization of gate valve made by forging method instead of welding method. In this study, we propose an optimal shape design to improve the mechanical efficiency of gate valve. In order to optimize more efficiently and reliably, the meta-modeling technique has been developed to solve such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Also, we prove reliability of the DACE model's application to gate valve by computer simulations using FEM(Finite Element Method).

In-Plane Deformation Analysis and Design of Experiments Approach for Injection Molding of Light Guide Plate for LCDs

  • Lee Ho-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2006
  • A computer code was developed to simulate both the thermal stresses introduced during the post-filling stage and the in-plane deformation after ejection process by finite element method based on the plane stress theory. The computer simulation was applied to the mold design of a 2 inch light guide plate (LGP) for thin film transistor (TFT)-liquid crystal displays (LCD). With injection molding experiments based on the design of experiments (DOE) technique, the influences of the processing conditions in injection molding on brightness and uniformity of the LGP were investigated, and the optimal processing parameters were selected to increase the brightness and uniformity. The verification experiment showed that the brightness and uniformity of the LGP were increased dramatically under the selected optimal processing conditions.

Evaluation of Design of Experiments to Develop MOF-5 Adsorbent for Acetylene Capture

  • Min Hyung Lee;Sangmin Lee;Kye Sang Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.322-327
    • /
    • 2023
  • A design of experiments was evaluated in optimizing MOF-5 synthesis for acetylene adsorption. At first, mixture design was used to optimize precursor concentration, terephthalic acid, zinc acetate dihydrate and N,N-dimethylformamide. More specifically, 13 conditions with various molar ratios were designed by extreme vertices design method. After preparing the samples, XRD, N2 physisorption and SEM analysis were performed for their characterization. Moreover, acetylene adsorption experiments were carried out over the samples under identical conditions. The optimal precursor composition for MOF-5 synthesis was predicted on a molar basis as follows: terephthalic acid : acetate dihydrate : dimethylformamide = 0.1 : 0.4 : 0.5. Thereafter, multi-level factorial design was designated to investigate the effect of synthesis reaction conditions such as temperature, time and stirring speed. By the statistical analysis of 18 samples designed, 4 reaction parameters were determined for additional adsorption experiments. Therefore, MOF-5 prepared under the synthesis time and temperature of 100 ℃ and 12 h, respectively, showed the maximum adsorption capacity of 15.1 mmol/g.

Alternation to the Randomized Block Design for Agricultural Experiments in Korea (농업실험에서 임의화블록설계에 대한 대안 - 농촌진흥청 사례들을 중심으로 -)

  • 허명회;한원식;신한풍
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.1
    • /
    • pp.15-27
    • /
    • 1997
  • Randomized block design (RBD) with three replication is very frequently adopted in agricultural experiments of the Rural Development Administration of Korea. Even though it works well in field trials of traditional crops, it may not accomodate trial site conditions and/or experimental environment. In this research report, we deal with two such cases. The first case is for a crop experiment in green houses. In house conditions, RBD may not be appropriate since it cannot reflect two directions of the yield gradient. So, a Latin square design is suggested as an alternative. The second case is for local field experiments of the newly-inbred rice. RBD with three replications is used without doubt for decades, even though the site layout is not appropriately shaped for the design. In this case, we suggest the RBD in two blocks with multiple replicates for control varieties as an alternative. To improve the quality of statistical experimental designs in over one-thousand agricultural trials performed annually in the Rural Development Administration, we need to re-train agricultural researchers on the design and analysis of experiments and call for concerns of Korean statisticians.

  • PDF

Molding Design Factors Optimization for Maximizing Shrinkage Uniformity of Injection Molded Part using Design of Experiments (실험계획법을 이용한 사출품의 균일 수축을 위한 성형 설계인자의 최적화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Yin, Jeong-Je;Lee, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.70-76
    • /
    • 2011
  • This paper presents an optimization procedure for reducing warpage of injection molded part by using a volumetric shrinkage deviation as an objective function. A design of experiments based on orthogonal arrays was used in the optimization procedure, and the entire optimization was performed through a two stage process - a preliminary experimentation and a principal experimentation. Proposed optimization method was applied to the design of a CPU-base part in computer. With the moderate number of experiments, an optimal molding condition for uniform distribution of volumetric shrinkage was obtained, as a result, the warpage of the molded part was significantly reduced.

A Study on Spindle Shape Design using Design of Experiments (실험계획법을 이용한 주축 형상 설계에 관한 연구)

  • Shin, Jae-Ho;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.120-127
    • /
    • 2009
  • Spindle units of machine tool are very important part in the manufacturing area. Recently high speed machining has become the main issue of metal cutting. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Due to increase of the rotational speed of the spindle, there has been renewal of interest in vibration of spindle. This paper concerns the improvement of spindle design using design of experiments. To improve the design of critical speed and weight of spindle, the experiments using central composite method have been carried out. The targets are critical speed and weight of spindle. For optimization of critical speed and weight and optimization of only critical speed by operation of all area search through response optimizer, the result of analysis has improved design of each factor. Finite element analyses are performed by using the commercial codes ARMD, CATIA V5 and ANSYS workbench. From the results, it has been shown that the proposed method is effective for modification of spindle design to improve critical speed and weight.