• 제목/요약/키워드: design of aspheric surface

검색결과 52건 처리시간 0.02초

휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가 (Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone)

  • 백승엽;이은상
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

비구면 렌즈의 생산성 향상을 위한 최적가공조건선정 (Selection of optimal machining condition for productivity enhancement of aspheric surface lens)

  • 백승엽;이해동;김성철;이은상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.561-562
    • /
    • 2006
  • To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

  • PDF

비구면의 설계와 측정 (Study on design and measurement of aspheric)

  • 박동화
    • 한국안광학회지
    • /
    • 제10권2호
    • /
    • pp.133-138
    • /
    • 2005
  • 비구면렌즈는 구면렌즈계의 단점을 보완하여 결상 성능을 향상시키며, 렌즈의 사용매수를 경감시키고 이로 인하여 광학계의 무게와 부피를 줄이는 소형경량화를 목적으로 하여 사용되고 있다. 비구면 광학소자의 생산기술과 측정기술은 현대의 첨단기술로 부각되고 있다. 비구면으로 구성된 원광학계는 넓은 시야와 고성능, 양질의 상을 얻을 수 있고, 또한 소형, 경량화 시킬 수 있는 등 많은 장점을 가지고 있다. 이러한 비구면 소자의 급증하는 필요성에 부응하여 비구면 가공 기술과 측정 기술에 대하여 연구하고자 한다. 비구면 생산 기술과 측정 및 평가 기술은 끊임없이 발전하고 있음을 밝혀둔다.

  • PDF

역공학을 이용한 비구면 렌즈의 형상 설계 정보 추출 (Reverse Engineering of an Aspheric Lens Curvature)

  • 김한섭;전종업;박규열
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.144-149
    • /
    • 2005
  • This study presents the method of extracting shape design data on any aspheric lens by reverse engineering. The design formula fur aspheric lenses is needed in almost all of the design, manufacture and measuring processes. The difficulty in designing the lens lies in the fact that it uses a complex formula for the aspheric surface, and many of the preliminary design values must be selected before actually inserting them into the formula. If the values could be extracted from an aspheric lens for which the structural design information is unknown and used in designing other lenses of similar characteristics, the difficulties in designing and measuring aspheric lens could be reduced. Therefore, in this study, the concept of reverse engineering was applied to demonstrate the method of extracting shape design information of aspheric lens from an arbitrary aspheric lens.

광학소자용 초정밀 비구면 가공프로그램 개발 (The Development of Ultra-precision Aspheric Program for Optical)

  • 김우순;김동현;난바의치
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.53-57
    • /
    • 2004
  • In this paper, we will present the Aspheric Surface Program for optical element. X-ray optical element designed to give a high resolution and reflectively in order to observe the living cell in the range of the water window. According to optical design, we developed the Aspheric Surface Program using the visual basic. Using the Aspheric Surface Program, we directly machined the electroless nickel bulk.

  • PDF

비구면 광학소자의 복제기술 개발 (The Development of aspheric elements using replication process)

  • 민지홍;김영일;이문규;조성민;최환영
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 하계학술발표회
    • /
    • pp.42-43
    • /
    • 2000
  • Aspheric optical elements can provide an advantage in the design of optical system that require high performance and small size. The main disadvantage of high volume production of aspheric optical elements is very high cost. In this paper, we suggest new technology of high volume production process using replication process. The replication is a thin film of UV cured resin on a solid substrate blank(polymer substrate) with aspheric surface.

  • PDF

보정 프로그램을 이용한 Plastic 렌즈 Core의 보정에 관한 연구 (A Study on the Improvement of the Shape Accuracy of Plastic Lens by Compensation Program)

  • 우선희;이동주
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.112-118
    • /
    • 2008
  • In order to meet the optical performance in the process of the micro lens manufacturing with plastics, it is important to embody accuracy in shape and surface roughness to the intended design. Since it is difficult to machine exactly the mold core of lens fit to the designed shape, in this paper, a simple program using MATLAB is developed for shape correction of the mold core after first machining it. This program evaluates correction parameters(aspheric coefficients and curvature) and generates aspheric NC data for compensating the core surface in prior machining process. The program provides the way to manufacture plastic injection molding lens with aspheric shape of high precision, and is expected to be effective for correction and to shorten the processing time.

초정밀 금형가공기를 이용한 비구면 렌즈 가공특성 연구 (Characteristics of aspheric lens processing using ultra-precision moulds processing system)

  • 백승엽;이하성;강동명
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.7-11
    • /
    • 2007
  • The fabrication of precision optical components by deterministic CNC grinding is an area of great current interest. Replacement of the traditional, craftsman driven, optical fabrication process is essential to reduce costs and increase process flexibility and reliability. Moreover, CNC grinding is well suited to the fabrication of complex shapes such as aspheres, making it possible to design optical systems with fewer components and reduced weight. Current technology is capable of producing surfaces with less than 2 microns peak to valley error, 50 nm rms surface roughness, and less than 1 micron subsurface damage. Bound abrasive tools, in which the abrasive particles are fixed in a second (matrix) material, play an important part in achieving this performance. In this paper, the factors affecting the ultra-fine surface roughness and profile accuracy of machined surfaces of aspheric parts has been analyzed experimentally and theoretically and on ultra-precision aspheric grinding system and precise adjusting mechanism have been designed and manufactured. In the paper we report the results of experiments and modeling performed to examine the effects of machinability, occurring during grinding of optical surfaces, on the tool surface profile. Profiles of machined surface were measured by using SEM. In order to optimize grinding conditions of aspheric lens processing, we performed experiments by design of experiments.

  • PDF

실험계획법과 보정가공을 이용한 비구면 유리렌즈 성형용 코어의 초정밀 연삭가공 최적화 (Ultra-precision Grinding Optimization of Mold Core for Aspheric Glass Lenses using DOE and Compensation Machining)

  • 김상석;이용철;이동길;김혜정;김정호
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.45-50
    • /
    • 2007
  • The aspheric lens has become the most popular optical component used in various optical devices such as digital cameras, pick-up lenses, printers, copiers etc. Using aspheric lenses not only miniaturizes and reduces the weight of products, but also lower prices and higher field angles can be realized. Additionally, plastic lenses are being changed to glass lenses more recently because of low accuracy, low acid-resistance and low thermal-resistance in the plastic lenses. Currently, one fabrication method of glass lenses is using a glass-mold method with a high precision mold core for mass production. In this paper, DOE (Design Of Experiments) and compensation machining were adopted to improve the surface roughness and the form accuracy of the mold core. The DOE has been done in order to discover the optimal grinding conditions which minimize the surface roughness with factors such as work spindle revolution, turbine spindle revolution, federate and cutting depth. And the compensation machining is used to generate high form accuracy of the mold core. From various experiments and analyses, we could obtain the best surface roughness 5 nm in Ra, form accuracy $0.167\;{\mu}m$ in PV.

DOE를 적용한 카메라폰 모듈용 비구면 Glass 렌즈의 가압성형조건 연구 (A Study on Pressing Conditions in the molding of Aspheric Glass Lenses for Phone Camera Module using Design of Experiments)

  • 김혜정;차두환;이준기;김상석;김정호
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.720-725
    • /
    • 2007
  • This study investigated the pressing conditions in the molding of aspheric glass lenses for the mega pixel phone camera module using the DOE method. Tungsten carbide (WC; Japan, Everloy Co., 002K),which contained 0.5 w% cobalt (Co), was used to build the mold. The mold surface was ultra-precision ground and polished, and its form accuracy (PV) was 0.85um in aspheric surface. We selected four factors, pressing temperature, force and time of first step, and force of second step, respectively, as the parameters of the pressing process. in order to reduce the number of experiments, we applied fractional factorial design considering the main effects and two-way interactions. The analysis results indicate that the only two main effects, the pressing temperature and the time of pressing step 1, are available for the form accuracy (PV) of the molded lens. The analysis results indicated that the best combination of the factors for lowering the form accuracy(PV) value of molded lens was to have them at their low levels.