• Title/Summary/Keyword: design of algorithms

Search Result 2,705, Processing Time 0.031 seconds

Computational Analysis of PCA-based Face Recognition Algorithms (PCA기반의 얼굴인식 알고리즘들에 대한 연산방법 분석)

  • Hyeon Joon Moon;Sang Hoon Kim
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.247-258
    • /
    • 2003
  • Principal component analysis (PCA) based algorithms form the basis of numerous algorithms and studies in the face recognition literature. PCA is a statistical technique and its incorporation into a face recognition system requires numerous design decisions. We explicitly take the design decisions by in-troducing a generic modular PCA-algorithm since some of these decision ate not documented in the literature We experiment with different implementations of each module, and evaluate the different im-plementations using the September 1996 FERET evaluation protocol (the do facto standard method for evaluating face recognition algorithms). We experiment with (1) changing the illumination normalization procedure; (2) studying effects on algorithm performance of compressing images using JPEG and wavelet compression algorithms; (3) varying the number of eigenvectors in the representation; and (4) changing the similarity measure in classification process. We perform two experiments. In the first experiment, we report performance results on the standard September 1996 FERET large gallery image sets. The result shows that empirical analysis of preprocessing, feature extraction, and matching performance is extremely important in order to produce optimized performance. In the second experiment, we examine variations in algorithm performance based on 100 randomly generated image sets (galleries) of the same size. The result shows that a reasonable threshold for measuring significant difference in performance for the classifiers is 0.10.

  • PDF

Optimum Design of Steel Frames Using Genetic Algorithms (유전자 알고리즘을 이용한 강 뼈대 구조물의 최적설계)

  • 정영식;정석진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.337-349
    • /
    • 2000
  • Genetic Algorithms(GA) together with simulated annealing are often called methods of last resorts since they can be applicable to any kind of problems, particularly those to which no sophisticated procedures are applicable or feasible. The design of structures is primarily the process of selecting a section for each member from those available in the market, resulting in the problem of combinatorial nature. Therefore it is usual for the design space to include astronomical number of designs making the search in the space often impossible. In this work, Genetic Algorithms and some related technique are introduced and applied to the design of steel frameworks. In problems with a small number of design variables, GA found true global optima. GA also found true optima for the continuous variable test problems and proved their applicability to structural optimization. For those problems of real size, however, it appears to be difficult to expect GA to find optimum or even near optimum designs. The use of G bit improvement added to ordinary GA has shown much better results and draws attention for further research.

  • PDF

Estimation of Optimal Control Parameters and Design of Hybrid Fuzzy Controller by Means of Genetic Algorithms (유전자 알고리즘에 의한 HFC의 최적 제어파라미터 추정 및 설계)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan;Kim, Yong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.11
    • /
    • pp.599-609
    • /
    • 2000
  • The new design methodology of a hybrid fuzzy controller by means of the genetic algorithms is presented. First, a hybrid fuzzy controller(HFC) related to the optimal estimation of control parameters is proposed. The control input for the system in the HFC combined PID controller with fuzzy controller is a convex combination of the FLC's output and PID's output by a fuzzy variable, namely, membership function of weighting coefficient. Second, an auto-tuning algorithms utilizing the simplified reasoning method and genetic algorithms is presented to automatically improve the performance of hybrid fuzzy controller. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA, three kinds of estimation modes such as basic, contraction, and expansion mode are effectively utilized. The proposed HFC is evaluated and discussed to show applicability and superiority with the and of three representative processes.

  • PDF

The Optimization of Sizing and Topology Design for Drilling Machine by Genetic Algorithms (유전자 알고리즘에 의한 드릴싱 머신의 설계 최적화 연구)

  • Baek, Woon-Tae;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.24-29
    • /
    • 1997
  • Recently, Genetic Algorithm(GA), which is a stochastic direct search strategy that mimics the process of genetic evolution, is widely adapted into a search procedure for structural optimization. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA is very simple in their algorithms and there is no need of continuity of functions(or functionals) any more in GA. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher porbability of convergence to global optimum compared to traditional techniques which take one-point search method. The methods consist of three genetics opera- tions named selection, crossover and mutation. In this study, a method of finding the omtimum size and topology of drilling machine is proposed by using the GA, For rapid converge to optimum, elitist survival model,roulette wheel selection with limited candidates, and multi-point shuffle cross-over method are adapted. And pseudo object function, which is the combined form of object function and penalty function, is used to include constraints into fitness function. GA shows good results of weight reducing effect and convergency in optimal design of drilling machine.

  • PDF

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

Recent Development of Search Algorithm on Small Molecule Docking (소분자 도킹에서의 탐색알고리듬의 현황)

  • Chung, Hwan Won;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.55-58
    • /
    • 2009
  • A ligand-receptor docking program is an indispensible tool in modern pharmaceutical design. An accurate prediction of small molecular docking pose to a receptor is essential in drug design as well as molecular recognition. An effective docking program requires the ability to locate a correct binding pose in a surprisingly complex conformational space. However, there is an inherent difficulty to predict correct binding pose. The odds are more demanding than finding a needle in a haystack. This mainly comes from the flexibility of both ligand and receptor. Because the searching space to consider is so vast, receptor rigidity has been often applied in docking programs. Even nowadays the receptor may not be considered to be fully flexible although there have been some progress in search algorithm. Improving the efficiency of searching algorithm is still in great demand to explore other applications areas with inherently flexible ligand and/or receptor. In addition to classical search algorithms such as molecular dynamics, Monte Carlo, genetic algorithm and simulated annealing, rather recent algorithms such as tabu search, stochastic tunneling, particle swarm optimizations were also found to be effective. A good search algorithm would require a good balance between exploration and exploitation. It would be a good strategy to combine algorithms already developed. This composite algorithms can be more effective than an individual search algorithms.

  • PDF

Design of Fuzzy Logic Adaptive Filters for Active Mufflers (능동 머플러를 위한 퍼지논리 적응필터의 설계)

  • Ahn, Dong-Jun;Park, Ki-Hong;Kim, Sun-Hee;Nam, Hyun-Do
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.84-90
    • /
    • 2011
  • In active noise control filter, LMS algorithms which used for control filter, assure the convergence property, and computational burden of these algorithms are proportionate to the filter taps. The convergence speed of LMS algorithms is mainly determined by value of the convergence coefficient, so optimal selection of the value of convergence coefficient is very important. In this paper, We proposed novel adaptive fuzzy logic LMS algorithms with FIR filter structure which has better convergence speed and less computational burden than conventional LMS algorithms, for single channel active noise control with ill conditioned signal case. Computer simulations were performed to show the effectiveness of a proposed algorithms.

A Development of Heuristic Algorithms for the Multi-stage Manufacturing Systems with Sequence Dependent Setup Times (준비시간이 종속적인 n/M 스케쥴링 문제의 휴리스틱 알고리듬(I))

  • Choe, Seong-Un;No, In-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.1
    • /
    • pp.35-47
    • /
    • 1989
  • This paper is concerned with a development and evaluation of heuristic algorithms for the n-job, M-stage flowshop with sequence dependent setup times. Three heuristic algorithms, CAIDAN, DANNEN and PETROV, are proposed. The makespan is taken as a performance measure for the algorithms. The experiment for each algorithm is designed for a $4{\times}3{\times}3$ factorial design with 360 observations. The experimental factors are PS (ratio of processing times to setup times), M (number of machines), and N (number of jobs). The makespan of the proposed heuristic algorithms is compared with the optimal makespan obtained by the complete enumeration method. The result of comparision of performance measure is called a relative error. The mean relative errors of CAIDAN, DANNEN and PETROV algorithms are 4.488%. 6.712% and 7.282%, respectively. The computational results are analysed using SPSS. The experimental results show that the three factors are statistically signiticant at 5% level.

  • PDF

Upgraded salp swarm algorithm for optimal design of semi-active MR dampers in buildings

  • Farzad Raeesi;Hedayat Veladi;Bahman Farahmand Azar;Sina Shirgir;Baharak Jafarpurian
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.197-209
    • /
    • 2023
  • In the case of designing control devices in a building, reliance on experimental formulation or engineering concepts without using optimization algorithms leads to non-optimal solutions or design parameters, which makes the use of control devices costly and unreasonable. The optimization algorithms are capable of identifying the required number of parameters for a specific design problem, however, this process is difficult and inefficient in dealing with some specific optimal design processes. This paper aims to introduce an upgraded version of the salp swarm algorithm to handle some engineering design. The performance of the new upgraded algorithm is tested using some benchmark test functions as well as a six-story benchmark building equipped with semi-active MR dampers. The simulation results show that the proposed algorithm can be successfully applied to get an optimal design of the MR dampers in the building.

Optimal Design of Inverse Electromagnetic Problems with Uncertain Design Parameters Assisted by Reliability and Design Sensitivity Analysis

  • Ren, Ziyan;Um, Doojong;Koh, Chang-Seop
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.266-272
    • /
    • 2014
  • In this paper, we suggest reliability as a metric to evaluate the robustness of a design for the optimal design of electromagnetic devices, with respect to constraints under the uncertainties in design variables. For fast numerical efficiency, we applied the sensitivity-assisted Monte Carlo simulation (S-MCS) method to perform reliability calculation. Furthermore, we incorporated the S-MCS with single-objective and multi-objective particle swarm optimization algorithms to achieve reliability-based optimal designs, undertaking probabilistic constraint and multi-objective optimization approaches, respectively. We validated the performance of the developed optimization algorithms through application to the optimal design of a superconducting magnetic energy storage system.