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ABSTRACT

Principal component analysis (PCA) based algorithms form the basis of numerous algorithms and
studies in the face recognition literature. PCA is a statistical technique and its incorporation into a face
recognition system requires numerous design decisions. We explicitly take the design decisions by in-
troducing a generic modular PCA-algorithm since some of these decision are not documented in the
literature. We experiment with different implementations of each module, and evaluate the different im-
plementations using the September 1996 FERET evaluation protocol (the de facto standard method for
evaluating face recognition algorithms). We experiment with (1) changing the illumination normalization
procedure; (2) studying effects on algorithm performance of compressing images using JPEG and wavelet
compression algorithms; (3) varying the number of eigenvectors in the representation; and (4) changing
the similarity measure in classification process. We perform two experiments. In the first experiment,
we report performance results on the standard September 1996 FERET large gallery image sets. The
result shows that empirical analysis of preprocessing, feature extraction, and matching performance is
extremely important in order to produce optimized performance. In the second experiment, we examine
variations in algorithm performance based on 100 randomly generated image sets (galleries) of the same
size. The result shows that a reasonable threshold for measuring significant difference in performance
for the classifiers is 0.10.
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1. Introduction

Principal Component analysis(PCA) is a sta-
tistical method for reducing the dimensionality of
high dimensional data, where the data is repre-
sented as a vector. PCA is popular because it is
easy to implement, is a natural dimensionality
reduction method.

The PCA algorithm is widely used in face re-
cognition since it can be easily implemented and
its dimensionality reduction capability.

Also, PCA achieves reasonable performance
levels{1] and the bases for algorithms{1,2], and
serves as a computational model in psycho-physics
{4,59]. In designing an algorithm around PCA, a
number of critical design issues have to be
addressed. Each of these design decisions has an
impact on the overall performance of the algorithm.
Some of these design decisions have been explicitly
stated in the literature; for example, the distance
function in the nearest neighbor classifier. However,
a large number of decisions are not mentioned and
are passed from researcher to researcher by word
of mouth. For example, illumination normalization
and number of eigenfeatures included in the rep-
resentation.

Because the design details are not explicitly
stated, a reader cannot assess the merits of a par-
ticular implementation and the associated claims.
This can unnecessarily caste a shadow on per-
formance claims of a new algorithm when a PCA-
based algorithm is used as a strawman. Knowl-
edge of the basic strengths and weaknesses of
different implementations can provide insight and
guidance in developing algorithms that build on
PCA. We present a generic modular PCA-based
face recognition algorithm. The algorithm consists
of preprocessing, PCA decomposition, and rec-
ognition modules. Each module consists of a series
of basic steps, where the purpose of each step is
fixed. However, we systematically vary the algo-

rithm in each step. For example, the classifier step

will always recognize a face, but we will exper-
iment with different classifiers. The selection of
which algorithm is in each step is a design de-
cision. Based on the generic model for PCA-based
algorithms, we evaluate different implementations.
Because we use the generic model, we can change
the implementation in an orderly manner and
assess the impact on performance of these mod-
ification. The algorithms are evaluated with the
FERET testing procedure[1]. Experiment one does
a detailed evaluation of variations in the im-
plementation. Results are reported for standard
galleries and probe sets described in[1]. The gal-
lery is the set of known individuals. An image of
unknown face presented to the algorithm is called
a probe, and the collection of probes is calied the
probe set. By testing on standard galleries and
probe sets, the reader can compare the performance
of our PCA implementations with the algorithms
tested under the FERET program. In experiment
one, we vary the illumination normalization pro-
cedure, the number of eigenvectors in the repre-
sentation, and the distance in the classifier; and we
study the effects of compressing facial images on
algorithm performance. The effects of image com-
pression on recognition has not previously been
studied. This is of interest in applications where
image storage space or image transmission time
are critical parameters.

In algorithm evaluation, the following two crit-
ical questions are often ignored. First, how does
performance vary with different galleries and probe
sets. Second, when is the difference in performance
between two algorithms significant. In experiment
two, we look at this question by randomly ge-
nerating 100 galleries of the same size. We then
calculate performance on each of the galleries
against two different categories of probes (probes
taken on the same day as the gallery images and
probes taken on different days than the gallery
images). Because we have 100 scores for each

category of probe, we can examine the range of
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scores, and the overlap in scores among different

imglementations of the PCA algorithm.

2. PCA-based Face Recognition System

2.1 Principal component analysis (PCA)

Principal component analysis (PCA) is a sta-
tist.cal dimensionality reduction method, which
produces the optimal linear least squared de-
composition of a training set. Kirby and Sirovich[6]
applied PCA to representing faces and Turk and
Pentland{5,10] extended PCA to recognizing faces.
In PCA, an image is represented as a point in
R"™ ™ where the image is n by m pixels. The input
to the PCA algorithm is a training set of images
where the ensemble mean is zero. From a training
se: of N images, PCA generates a set of N-I
eigenvectors and eigenvalues. (In the literature,
the eigenvectors are sometimes referred to as
eigenfaces.) We normalize the eigenvectors so that
thev are orthonormal. The eigenvectors are ordered
so “hat A, A+, where A, are the eigenvalues.
The A,'s are equal to the variance of the projection
of the training set onto the i th eigenvector. Thus,
the low order eigenvectors encode the larger
varations in the training set (low order refers to
the index of the eigenvectors and eigenvalues).

In a PCA-based face recognition algorithm, the
face is represented by its projection onto a subset
of M eigenvectors, which we will call face space.
This is represented as a point in R™. A gallery
of K individuals is represented as K points g, in
face space. Let p be the representation of a probe
in face space. The probe is identified as person

jin  the gallery, if distance d(p,g;)=
min d(p, g;); i.e, the probe is identified as the
person that minimizes the distance between p and
the g,’s. Selecting the distance function d is one

of the algorithm design decisions.

2.2 System modules

Qur face recognition system is shown in Fig. 1.

MODULE 1 MODULE 2 MODULE 3
Normalization Feature Recogmuon
Extraction
Nearest
Neighbar
Classifier
T
’ Original l Eigenvecta :1?0 on
Image Genearation Eigenve
Face
Masking Gallery Image
Probe image

Fig. 1. Block Diagram of PCA-based Face Rec-
ognition System.

and consists of three modules and each module is
composed of a sequence of steps. The first module
preprocesses the input image. The goal of the
preprocessing is to transform the facial image into
a standard format that removes variations that can
affect recognition performance. This module con-
sists of four steps. The first step filters or com-
presses the original image. The image is filtered
to remove high frequency noise in the image. An
image is compressed to save storage space and
reduce transmission time. The second step places
the face in a standard geometric position by ro-
tating, scaling, and translating the center of eyes
to standard locations. The goal of this step is to
remove variations in size, orientation, and location
of the face. The third step masks out background
pixels, hair, and clothes. The masked regions vary
from day to day and can interfere with iden-
tification. The fourth step removes some of the
variations in illumination between images. Changes
in illumination are critical factors in algorithm
performance[1].

The second module performs the PCA decom-
position on the training set. This produces the
eigenvectors (eigenfaces) and eigenvalues. The
third module identifies the face from a pre-
processed image, and consists of two steps. The
first step projects the image onto the eigenvectors
that represent the face. The critical parameter in

this step is the subset of eigenvectors that



250 HENICHSE =2AX M6é2 K25(2003. 4)

represent the face. The second step recognizes
faces using a nearest neighbor classifier. The
critical parameter in this step is the distance

function in the classifier.

3. Test Design

3.1 FERET Database

The FERET database provides a common da-
tabase of facial images for both development and
testing of face recognition algorithms and has
become the de facto standard for face recognition
of still images(1,2]. In the FERET database, images
of individual were acquired in sets of 5 to 11
images. Each set includes two frontal views fa and
fb; a different facial expression was requested for
the second frontal image. For 200 sets of images,
a third frontal image was taken with a different
camera and different lighting (f¢). (The remaining
images were non-frontal images and were not
used in this study.) One emphasis of the database
collection was on duplicate image sets. Duplicate
is defined as an image of a person whose corre-
sponding gallery image was from a different image
set (usually taken on a different date). The da-
tabase contains 365 duplicate sets of images. For
91 duplicate sets, the time between the first and
last sittings was at least 18 months. In an effort
to maintain a degree of consistency throughout the
database, the photographer used the same physical
setup in each session. However, because the
equipment had to be reassembled for each session,
there was variation from session to session. This
results in variations in scale, pose, expression, and
illumination of the face. For details of the FERET
database, refer to[7].

Sample images are shown in following Figures.

dupiicate

3.2 Design rule

To obtain a robust comparison of algorithms, it
is necessary to calculate performance on a large
number of galleries and probe sets. To allow
scoring on multiple galleries and probe sets, we
have to adopt an appropriate protocol. In the new
protocol, an algorithm is given two sets of images:
the target set and the gquery set. We introduce this
terminology to distinguish these sets from the
galleries and probe sets that are used in computing
performance statistics. The target set is given to
the algorithm as the set of known facial images.
The images in the query set are the unknown facial
images to be identified.

Definition : For each image ¢, in the query set
@, an algorithm reports the similarity s, between

¢, and each image ¢, in the target set T. The key
property, which allows for greater flexibility in

scoring, is that for any two images s, and ¢, we
know si. From the output files, algorithm per-
formance can be computed for virtual galleries and
probe sets. Thus, we can create and score results
for any gallery GCP and any probe set PC Q. For
a given gallery G and probe set P, the performance
scores are computed by examination of the sim-
ilarity measures s such that g, P and #eG.
We refer to such galleries and probe sets as virtual
galleries and virtual probe sets (because they are
subsets of the target set and query set).

In our experiments, we report performance for
four different categories of probes. The FB probes
are the second frontal images from the same
session as the frontal images that are in the gallery.
(In a gallery, either the fa or fb images are placed
in the gallery, and the other image is placed in the
probe set. We will denote those frontal images that
are placed in the probe set by FB.) The fc probes
are the fc image from the same session as the
frontal image in the gallery. (Note: there are only

200 sets of images with fc images.) The duplicate

I probes are the duplicate frontal images of the
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images in the gallery (frontal images from different
image sets---usually different days). The du-
plicate 11 probes are images where there is at least
a vear and half between the acquisition of the
gallery and probe images. We report identification
results using a closed universe model. In the closed
universe, every probe is in the gallery. The
complement to the closed universe is the open
universe where some probes are not in the gallery.
The open universe model is used in verification and
authentification scenarios. The results for these
scenarios can be found in Rizvi et al.[8].

For the closed universe, we report performance
as cumulative match scores. The rank is plotted
along the horizontal axis, and the vertical axis is
the percentage of correct matches. The cumulative
match scores can be calculated for any subset of
the probe set. We calculated this score to evaluate
an algorithm’s performance on different categories
of probes. The computation of the score is quite
simple. Let P be the number of probes to be scored

and R, the number of these probes in the subset

that are in the top k. The fraction is reported as

R,/ P. The top rank match (or score) is R, (the

fraction of probes correctly identified).

4. Experiment |

The purpose of experiment I is to examine the
effects of changing the steps in our generic
PCA -based face recognition system. We do this by
establishing a baseline algorithm and then varying
the implementation of selected steps one at a time.
Ideally, we would test all possible combination of
variations. However, because of the number of
combinations, this is not practical and we vary the
steps individually. The baseline algorithm has the
following configuration: The images are not fil-
tered or compressed. Geometric normalization
consists of rotating, translating, and scaling the
images so the center of the eyes are on standard

pixels. This is followed by masking the hair and

background from the images. In the illumination
normalization step, the non-masked facial pixels
were normalized by a histogram equalization al-
gorithm. Then, the non-masked facial pixels were
transformed so that the mean is equal to 0.0 and
standard deviation is equal to 1.0. The geometric
normalization and masking steps are not varied in
the experiments in this paper. The training set for
the PCA consists of 501 images (one image per
person), which produces 500 eigenvectors. The
training set is not varied in the experiments in the
paper. In the recognition module, faces are re-
presented by their projection onto the first 200

eigenvectors and the classifier uses the L; norm.

4.1 Test sets, galleries, and probe sets

All images are from the FERET database, and
the testing was done with the September 1996
FERET protocol. In this protocol, the target set
contained 3323 images and the query set 3816
images. All the images in the target set were
frontal images. The query set consisted of all the
images in the target set plus non-frontal images
and digitally modified images. (The non-frontal
and digitally modified images were not included in
our analysis.) We report results for four different
probe categories. The size of the galleries and
probe sets for the four probe categories are
presented in Table 1. The FB, fc, and duplicate I
galleries are the same. The duplicate II gallery is

a subset of the other galleries.

Table 1. Size of galleries and probe sets for
different probe categories.

duplicate | duplicate |
Probe category I I FB fc
Gallery size 1196 864 1196 | 1196
Probe set size 722 234 1195 194

4.2 Variations in the normalization module
4.2.1 Ilumination normalization

We experimented with three variations to the
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illumination normalization step. For the baseline
algorithm, the non-masked facial pixels were
transformed so that the mean was equal to 0.0 and
standard deviation was equal to 1.0 followed by a
“"histogram equalization algorithm. First variation,
the non-masked pixels were not normalized
(original image). Second variation, the non-
masked facial pixels were normalized with a
histogram equalization algorithm. Third variation,
the non-masked facial pixels were transformed so
that the mean was equal to 0.0 and variance equal
to 1.0. The performance results from the illu-
mination normalization methods are presented in
Table 2.

Table 2. Performance results for illumination
normalization methods. Performance
score are the top rank match.

Illumination Probe category

normalization  |duplicate| duplicate | FB | fc
method I I probe | probe
Baseline 0.35 0.13 0.77 | 0.26

Original image 032 0.11 075 | 0.21

Hidtogram Eq. only] 0.34 0.12 0.77 | 0.24
#=0.0, 6=1.0 only 0.33 0.14 076 | 0.25

4.2.2 Compressing and filtering the images

We examined the effects of JPEG and wavelet
compression, and low pass filtering (LPF) on
recognition. For this experiment, the original im-
ages were compressed and then uncompress prior
to being feed into the geometric normalization step
of the normalization module. For both compression
methods, the images were compressed appr-
oximately 16:1 (0.5 bits per pixel). We experi-
mented with other compression ratios and found
that performance was comparable. However, the
performance starts to degrade if the compression
rate is 64:1 (0.125 bits per pixel) and low bit rate
coding‘ scenario. The results are for eigenvectors
generated from non-compressed images. We found
that performance in this case was slightly better

than on eigenvectors trained from compressed

images. Because compression algorithms usually
low pass filter the images, we decided to examine
the effects on performance of low pass filtering the
original image. The filter was a 3X 3 spatial filter
with a center value of 0.2 and the remaining values
equal to 0.1. Table 3 reports performance for the
baseline algorithm, JPEG and wavelet compres-
sion, and low pass filtering.

Table 3. Performance score for low pass filter,
JPEG, and wavelet compressed images
(0.5 bits/pixel compression). Perfor-
mance scores are the top rank match.

Probe category
Normalization | duplicate |duplicate| FB fc
I II probe | probe
Baseline 0.35 0.13 0.77 | 0.26
JPEG 0.35 0.13 078 | 025
Wavelet 0.36 0.15 079 | 025
LPF 0.36 0.15 079 | 024

4.3 Variations in the recognition module

4.3.1 Number of low order eigenvectors

The higher order eigenvectors which are asso-
ciated with smaller eigenvalues encode small var-
iations and noise among the images in the training
set. One would expect that the higher order
eigenvectors would not contribute to recognition.
We examined this hypothesis by computing per-
formance as a function of the number of low order
eigenvectors in the representation. Fig. 2. shows
the top rank score for FB and duplicate I probes
as the function of the number of low order
eigenvectors included in the representation in face

space. The representation consisted of e;...,e,, n
= 50, 100, ...,500, where e,s are the eigenvectors

generated by the PCA decomposition.

4.3.2 Removing low order eigenvectors
The low order eigenvectors encode gross
differences among the training set. If the low order

eigenvectors encode variations such as lighting
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Fig. 2. Performance on duplicate | and FB probes
based on number of low order eigen-
vectors used. (Number of images in ga-
jlery = 1196; Number of FB images in probe
set = 1195, Number of duplicate | in probe
set = 722).

changes, then performance may improve by

reroving the low order eigenvectors from the

representation. We looked at this hypothesis by
rerroving the 1, 2, 3, and 4th eigenvector from the
representation; i.e., the representation consisted of
ey .., exy i = 12345 The performance results

from these variations are given in Table 4. Among
the different category of probes, there is a
not ceable variation in performance for fc probe as

shown in Fig. 3.

4.3.3 Nearest neighbor classifier
We experimented with seven similarity mea-

suras for the classifier. The detailed classifiers are

Teble 4. Performance score with low order
eigenvectors removed. Performance
scores are the top rank match

Number of low Probe category
orcler eigenvectors |duplicate|duplicate| FB fc

removed I 11 probe | probe

0 (Baseline) 0.35 013 077 | 026

1 0.35 0.15 0.75 | 0.38

2 0.34 0.14 0.74 | 036

3 0.31 0.14 072 | 037

4 0.20 0.09 050 | 0.22
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Fig. 3. Performance on fc probes with first 1, 2,
3, and 4th eigenvectors removed.

described in Appendix. They are listed in Table 5,
along with the results. The performance score for
fc probes shows most variation among different
category of probes. The results for fc probes are

presented in Fig. 4.

Table 5. Performance scores based on different
nearest neighbor classifier. Performance
scores are the top rank match.

Probe category

Nearest neighbdr - -
" duplicate|duplicate| FB fc
classifier

i I probe | probe
Baseline(L1) 0.35 0.13 077 | 0.26
Euclidean(Lz) 0.33 0.14 072 | 0.04
Angle 0.34 0.12 070 | 007

Mahalanobis 042 0.17 074 | 023
Li+Mahalanobis 0.31 0.13 073 | 039
L:+Mahalanobis 0.35 0.13 077 | 031

Angle+

Mahalanobis

0.45 0.21 077 | 0.24

4.4 Discussion

In Experiment I, we conducted experiments that
systematically varied the steps in each module
based on our PCA-based face recognition system.
The goal belongs to understand the effects on
performance scores from these variations. In the
normalization module, we experimented with var-

ving the illumination normalization and compres—
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Fig. 4. Effects of nearest neighbor classifier for
face recognition. Performance scores for

fc probes.

sion steps. The results show that performing an
illumination normalization step improves per—
formance, but which implementation that is se-
lected is not critical. The results also show that
compressing or filtering the images does not
significantly effect performance.

In the recognition module, we experimented with
three classes of variations. First, we varied the
number of low order eigenvectors in the rep-
resentation from 50 to 500 by steps of 50. Fig 2.
shows that performance increases until approxi-
mately 200 eigenvectors are in the representation
and then performance decreases slightly. Repre-
senting faces by the first 40% of the eigenvectors
is consistent with results on other facial image sets
that the authors have seen.

Second, low order eigenvectors were removed.
Table 4 shows that removing the first eigenvector
resulted in an overall increase in performance. The
largest increase was observed with the fc probes.
This increase is further highlighted in Fig. 3. The
low order eigenvectors encode the greatest vari-
ations among the training set. The most significant
difference between the fc probes and the gallery
images was a change in lighting. If the low order
eigenvectors encode lighting differences, then this
would explain the substantial increase in perfor-

mance by removing the first eigenvector.

Third, the similarity measure in the nearest
neighbor classifier was changed. This variation
showed the largest range of performance. For
duplicate I probes, performance ranged from 0.31
to 0.45, and for fc probes the range was from 0.07
to 0.39. For duplicate I, duplicate IT and FB probes,
the angle+Mahalanobis distance performed the
best. For the fc probes, the L,+Mahalanobis

distance performed the best. But, this distance was
the worst for the duplicate I probe.

Because of the range of performance, it is clear
that selecting the similarity measure for the
classifier is the critical decision in designing a
PCA-based face recognition system. However,
decision of selecting similarity measure is de-
pendent on the type of images in the galleries and

probe sets that the system will process.

5. Experiment li

In experiment I, for some variations in com-
ponents, the change in performance appears to
small. Whereas, for others, the range appears to
be considerable, i.e., the nearest neighbor classifier.
The natural question is, when is the difference in
performance between two variations significant?
In this experiment we examine this question for
the nearest neighbor classifier. We choose to study
changing the classifiers because they had the
greatest variation in performance. To address this
question, we randomly generated 100 galleries of
200 individuals, with one frontal image per person.
The galleries were generated without replacement
from the FB gallery of 1196 individuals in exper-
iment one. (Thus, there is overlap between gal-
leries.) Then we scored each of the galleries
against the FB and duplicate I probes for each of
the seven classifiers in experiment one. (There
were not enough fc and duplicate II probes to
compute performances for these categories.)

For each randomly generated gallery, the cor-
responding FB probe set consisted of the second
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frontal image for all images in that gallery; the
dupl cate I probe set consisted of all duplicate
images for each image in the gallery. We measured
performance by the top rank score (the fraction of
probes that were correctly identified). For an initial
look at the range in performance, we examine the
baseline algorithm ( L, similarity measure). There
are similar variations for the six remaining dis—
tances. For each classifier and probe category, we
hac 100 different scores. Fig. 5 presents the his-
togram of top rank scores for the baseline algo-
rithra (L1 similarity measure) for both {FB} and

duplcate I probe sets. This shows a range in

20
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Fig. 5. Histogram of top rank scores of the
baseline algorithm (L; similarity mea-
sure) (a) FB probes and (b) duplicate !
probes.
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performance ranges from 0.80 to 0.92 for {FB}
probe, from 0.29 to 0.59 for duplicate I probe. This
clearly shows a large range in performance of the
100 galleries.

We present a truncated range of top rank scores
for the seven different nearest neighbor classifiers
in Fig 6. Fig. 6(a) shows the range for {FB} probes
and Fig. 6(b) for duplicate I probes. For each
classifier, score is marked with; the median by X,
the 10th percentile by +, and 90th percentile by
*, We plotted these values because they are robust
statistics. We selected the 10th and 90th percentile

because they mark a robust range of scores and
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Fig. 6. The range of top rank scores using seven
different nearest neighbor classifiers. The
nearest neighbor classifiers presented are:
(1)-L1, (2) L2, (3) Angle, (4)Mahalanobis,
(6) L, +Mahalanobis, (6) L, +Mahalanobis,
and (7)Angle+Mahalanobis. (a) FB
probes and (b) duplicate | probes
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outliers are ignored. From these results, we get a
robust estimate of the overall performance of each
classifier.

5.1 Discussion

The main goal of experiment two was to get a
rough estimate of when the difference in perfor-
mance is significant. From Fig. 6, the range in
scores is approximately =+ 0.05 about the median
for all 14 runs. This suggests a reasonable
threshold for measuring significant difference in
performance for the classifiers is ~0.10. The results
for duplicate I probes in experiment two are
consistent with the results in experiment one. In
Table 5, the top classifiers were the Mahalanobis
and angle+Mahalanobis and these two classifiers
produces better performance than the other
methods as shown in Table 6. In both experiments,
the L,+Mahalanobis received the lowest scores.
This suggest that for duplicate I scores that the
angle+Mahalanobis or Mahalanobis distance should
be used. Based on the results of this experiment,
performance of smaller galleries can predict rel-
ative performance on larger galleries.

For FB probes, there is not as sharp a division
among classifiers. One possible explanation is that
in experiment one, the top match scores for the FB
probes did not vary-as much as the duplicate I
scores. There is consistency among the best scores

( L,, L,+Mahalanobis, and angle+Mahalanobis).

The remaining classifiers’ performances can be

Table 6. Comparison of identification perfor-
mance scores for Baseline, Proposed |,
and Proposed |l algorithms. Perfor-

mance scores are the top rank match

Probe category
Algorithm | duplicate | duplicate | FB fc
1 11 probe | probe
Baseline 0.35 0.13 0.77 0.26
Proposed 1 ~ 049 0.26 0.78 0.26
Proposed I 0.40 0.26 0.78 0.33

grouped together. The performance scores of these
classifiers are within each other’s error margins.
We defined error margins as a robust range of
performance scores. This suggests that either the

L,, L,+Mahalanobis, or angle+Mahalanobis dis-

tance should be used.

6. Conclusion

We have presented a design methodology of
configuring PCA-based algorithm based on em-
pirical performance results. The heart of the
methodology is a generic modular design for
PCA-based face recognition systems. This allowed
us to systematically vary the components and
measure the impact of these variations on per-
formance. Our experiments show that quality and
type of images to be processed is the driving factor
in determining the design of a PCA-based system.
Based on the experiments we propose two algo-
rithms. The algorithms are called proposed I and
proposed II. The proposed I algorithm is optimized
for duplicate I and II probes. The proposed II
algorithm is optimized for fc probes.

The components of the proposed I algorithm are:

- illumination normalization ( £=0.0 and 0=1.0),

- Low-pass filtering,

- remove first low order eigenvector, and

- angle+Mahalanobis distance.

The components of the proposed II algorithm
are:

- illumination normalization ( z=0.0 and ¢=1.0),

- wavelet compression (0.5 bpp),

- remove first low order eigenvector, and

- L,+Mahalanobis distance.

Table 6 presents the identification scores for
both proposed algorithms. For FB probes, the
scores for all three algorithms are not significantly
different. The proposed 1 algorithm has better
performance scores for duplicate I probes than both
the baseline and proposed II algorithms. The
proposed II algorithm has better performance
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scoves for fc probes than both the baseline and
proposed I algorithms. On the duplicate II probes,
both proposed algorithms out perform the baseline
algorithm.

From the series of experiments with PCA-based
face recognition system, we have come to four
major conclusions.

First, JPEG and wavelet compression algorithms
do not degrade performance. This is important
because it indicates that compressing images to
save transmission time and storage costs will not
reduce algorithm performance. However, the per-
forrnance starts to degrade if the compression rate
is 64:1 (0.125 bits per pixel) and low bit rate coding
scenario.

Second, selection of the nearest neighbor clas-
sifier is the critical design decision for PCA-based
algorithms. The proper selection of nearest neigh-
bor classifier is essential to improve performance
scores. Furthermore, our experiments shows sim-
ilarity measures that achieve the best performance
are not generally considered in the literature.

Third, the performance scores vary among the
probe categories, and that the design of an algo-
rithm needs to consider the type of images that the
algorithm will process. The FB and duplicate I
probes are least sensitive to system design
decisions, while fc and duplicate Il probes are the
most sensitive.

Fourth, the performance within a category of
probes can vary greatly. This recommends that
when comparing algorithms, performance scores
from a set of galleries and probe sets need to be
examined. We generated 100 galleries and calculate
performance against fb and duplicate probes. Then,
we 2xamined the range of scores, and the overlap
in scores among different implementations.

For psycho-physics studies, our conclusions
have a number of implications. First, face rec-
ognition studies should include a range of images
in terms of quality. For example, when measuring

the concord between algorithm and human per-

formance, the results should be based on ex-
periments on multiple probe categories. Second, the
fine details of algorithm implements can have
significant impact on results and conclusion. This
conclusion can easily extend to other algorithms.
Because, like PCA, the majority of the face rec-
ognition algorithms in the literature are view-—
based and have the same basic architecture as our
PCA-based system.
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