• 제목/요약/키워드: design objective

검색결과 6,773건 처리시간 0.04초

크리깅 기법을 이용한 휠인 영구자석 동기전동기의 최적 설계 (Optimal Design of an In-Wheel Permanent Magnet Synchronous Motor Using a Design of Experiment and Kriging Model)

  • 장은영;황규윤;류세현;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.852-853
    • /
    • 2008
  • This paper proposes an optimal design method for the shape optimization of the permanent magnets (PM) of an in-wheel permanent magnet synchronous motor (PMSM) to reduce the cogging torque considering a total harmonic distortion (THD) and a root mean square (RMS) value of back-EMF. In this method, the Kriging model based on a design of experiment (DOE) is applied to interpolate the objective function in the spaces of design parameters. The optimal design method for the PM of an in-wheel PMSM has to consider multi-variable and multi-objective functions. The developed design method is applied to the optimization for the PM of an in-wheel PMSM.

  • PDF

일반화 전달강성계수법과 유전알고리즘을 이용한 골조구조물의 최적설계 (Optimum Design of Frame Structures Using Generalized Transfer Stiffness Coefficient Method and Genetic Algorithm)

  • 최명수
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.202-208
    • /
    • 2005
  • The genetic algorithm (GA) which is one of the popular optimum algorithm has been used to solve a variety of optimum problems. Because it need not require the gradient of objective function and is easier to find global solution than gradient-based optimum algorithm using the gradient of objective function. However optimum method using the GA and the finite element method (FEM) takes many computational time to solve the optimum structural design problem which has a great number of design variables, constraints, and system with many degrees of freedom. In order to overcome the drawback of the optimum structural design using the GA and the FEM, the author developed a computer program which can optimize frame structures by using the GA and the generalized transfer stiffness coefficient method. In order to confirm the effectiveness of the developed program, it is applied to optimum design of plane frame structures. The computational results by the developed program were compared with those of iterative design.

  • PDF

Airfoil Design for Martian Airplane Considering Using Global Optimization Methodology

  • Kanazaki, Masahiro;Utsuki, Motohiro;Sato, Takaya;Matsushima, Kisa
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.10-14
    • /
    • 2015
  • To design airfoils for novel airplanes, new knowledge of aerodynamics is required. In this study, modified Parametric SECtion (PARSEC) which is a airfoil representation is applied to airfoil design using a multi-objective genetic algorithm to obtain an optimal airfoil for consideration in the development of a Martian airplane. In this study, an airfoil that can obtain a sufficient lift and glide ratio under lower thrust is considered. The objective functions are to maximize maximum lift-to-drag ratio and to maximize the trailing edge thickness. In this way, information on the low Reynolds number airfoil could be extracted efficiently. The optimization results suggest that the airfoil with a sharper thickness at the leading edge and higher camber at the trailing edge is more suitable for a Martian airplane. In addition, several solutions which has thicker trailing edge thickness were found.

파레토 인공생명 최적화 알고리듬의 제안 (Development of Pareto Artificial Life Optimization Algorithm)

  • 송진대;양보석
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1358-1368
    • /
    • 2006
  • This paper proposes a Pareto artificial life algorithm for solving multi-objective optimization problems. The artificial life algorithm for optimization problem with a single objective function is improved to handle Pareto optimization problem through incorporating the new method to estimate the fitness value for a solution and the Pareto list to memorize and to improve the Pareto optimal set. The proposed algorithm was applied to the optimum design of a journal bearing which has two objective functions. The Pareto front and the optimal solution set for the application were presented to give the possible solutions to a decision maker or a designer. Furthermore, the relation between linearly combined single-objective optimization problem and Pareto optimization problem has been studied.

디지틀 컴퓨터에 의한 복합영농(複合營農) 시스템의 최적화(最適化) 연구(硏究) (I) -수학적(數學的) 모형(模型) (Optimizing Diversified Farming Systems by Digital Computer (I) -Mathematical Model)

  • 장동일;김기철;이상우;김만수
    • Journal of Biosystems Engineering
    • /
    • 제11권1호
    • /
    • pp.64-75
    • /
    • 1986
  • The objective of this study was to develop a mathematical model for optimum design of diversified farming systems which have the regional characteristics. For this purpose, the farming surveys were conducted for mainly 1984 agriculture. They were carried out on January and July 1985 for three villages of central region of Korea. The surveyed data were analyzed by systems analysis and the diversified farming systems were modeled. They consist of four and six croping patterns for paddy and upland, two and three kinds of fruit crop and livestock, and seven kinds of farm machinery for each work system. Then a mathematical model was developed by the multiple objective decision making (MODM) method in order to design optimum systems of diversified farming. It consists of 23 decision variables, two objective functions and nine constraint functions. The goals of objective function are maximization of agricultural incomes and power inputs of farm machinery, and the modeled factors for constraint function are arable land, available capital, labor, and land utilization.

  • PDF

피로수명예측을 위한 반응표면근사화와 절충의사결정문제의 응용 (Response Surface Approximation for Fatigue Life Prediction and Its Application to Compromise Decision Support Problem)

  • 백석흠;조석수;장득열;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1187-1192
    • /
    • 2008
  • In this paper, a versatile multi-objective optimization concept for fatigue life prediction is introduced. Multi-objective decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

  • PDF

Multi-objective geometry optimization of composite sandwich shielding structure subjected to underwater shock waves

  • Zhou, Hao;Guo, Rui;Jiang, Wei;Liu, Rongzhong;Song, Pu
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.211-224
    • /
    • 2022
  • Multi-objective optimization was conducted to obtain the optimal configuration of a composite sandwich structure with honeycomb-foam hybrid core subjected to underwater shock waves, which can fulfill the demand for light weight and energy efficient design of structures against underwater blast. Effects of structural parameters on the dynamic response of the sandwich structures subjected to underwater shock waves were analyzed numerically, from which the correlations of different parameters to the dynamic response were determined. Multi-objective optimization of the structure subjected to underwater shock waves of which the initial pressure is 30 MPa was conducted based on surrogate modelling method and genetic algorithm. Moreover, optimization results of the sandwich structure subjected to underwater shock waves with different initial pressures were compared. The research can guide the optimal design of composite sandwich structures subjected to underwater shock waves.

압전지능구조물의 최적설계를 위한 민감도 해석 (Sensitivity analysis for optimal design of piezoelectric structures)

  • 김재환
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.267-273
    • /
    • 1998
  • This study aims at performing sensitivity analysis of piezoelectric smart structure for minimizing radiated noise from the structure, The structure consists of a flat plate on which disk shaped piezoelectric actuator is mounted, and finite element modeling is used for the structure. The finite element modeling uses a combination of three dimensional piezoelectric, flat shell and transition elements so thus it can take into account the coupling effects of the piezoelectric device precisely and it can also reduce the degrees of freedom of the finite element model. Electric potential on the piezoelectric actuator is taken as a design variable and total radiated power of the structure is chosen as an objective function. The objective function can be represented as Rayleigh's integral equation and is a function of normal displacements of the structure. For the convenience of computation, all degrees of freedom of the finite element equation is condensed out except the normal displacements of the structure. To perform the design sensitivity analysis, the derivative of the objective function with respect to the normal displacements is found, and the derivative of the norma displacements with respect to the design variable is calculated from the finite element equation by using so called the adjoint variable method. The analysis results are compared with those of the finite difference method, and shows a good agreement. This sensitivity analysis is faster and more accurate than the finite difference method. Once the sensitivity analysis program is used for gradient-based optimizations, one could achieve a better convergence rate than non-derivative methods for optimal design of piezoelectric smart structures.

  • PDF

가압경수로용 환형 핵연료의 간극 크기 다중목적 근사최적설계 (Approximate Multi-Objective Optimization of Gap Size of PWR Annular Nuclear Fuels)

  • 도재혁;권영두;이종수
    • 한국정밀공학회지
    • /
    • 제32권9호
    • /
    • pp.815-824
    • /
    • 2015
  • In this study, we conducted the approximate multi-objective optimization of gap sizes of pressurized-water reactor (PWR) annular fuels. To determine the contacting tendency of the inner-outer gaps between the annular fuel pellets and cladding, thermoelastic-plastic-creep (TEPC)analysis of PWR annular fuels was performed, using in-house FE code. For the efficient heat transfer at certain levels of stress, we investigated the tensile, compressive hoop stress and temperature, and optimized the gap sizes using the non-dominant sorting genetic algorithm (NSGA-II). For this, response surface models of objective and constraint functions were generated, using central composite (CCD) and D-optimal design. The accuracy of approximate models was evaluated through $R^2$ value. The obtained optimal solutions by NSGA-II were verified through the TEPC analysis, and we compared the obtained optimum solutions and generated errors from the CCD and D-optimal design. We observed that optimum solutions differ, according to design of experiments (DOE) method.

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.