• Title/Summary/Keyword: design low flows

Search Result 110, Processing Time 0.024 seconds

Statistical Studies on the Derivation of Design Low Flows (I) (설계갈수량의 유도를 위한 수문통계학적 연구 (I))

  • 이순혁;박영근;박종근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.3
    • /
    • pp.43-52
    • /
    • 1992
  • Design low flows were derived from the decision of a best fitting probability distribution and of an optimum transformation method can be contributed to the planning of water utilization and management of various hydraulic structures during dry season in the main river systems in Korea. The results were analyzed and summarized as follows. 1.Basic statistics for the selected watersheds were calculated as one of means for the analysis of extremal distribution. 2.Parameters for the different frequency distributions were calculated by the method of moment. 3.Type m extremal distribution was confirmed as a best one among others for the frequency distribution of the low flows by x$^2$ goodness of fit test. 4.Formulas for the design low flows of the Type m extremal distribution with two and three parameters were dervied for the selected watersheds. 5.Design low flows for the Type m extremal distribution when a minimum drought is zero or larger than zero were derived for the selected watersheds, respectively. 6.Design low flows of the Type m extremal distribution with two parameters are appeared to be reasonable when a minimum drought approaches to zero and the observed low flows varied within a relating small range while those with three parameters are seemed to be consistent with the probability distribution of low flows when a minimum drought is larger than zero and the observed low flows showed a wide range.

  • PDF

Statistical Studies on the Derivation of Design Low Flows (II) (설계갈수량의 유도를 위한 수문통계학적 연구(II))

  • 이순혁;박명근;박종국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.4
    • /
    • pp.39-47
    • /
    • 1992
  • Derivation of reasonable design low flows was attempted by comparative analysis of design low flows was derived by Power and SMEMAX transformations for the normalizations of skewed distribution and by Type m extremal distribution presented in the first report of this study with annual low flows in the five watersheds of main river basins in Korea. The results were anslyzed and summarized as follows. 1.Basic statistics of annual low flows for the selected watersheds were calculated by using Power and SMEMAX transformations. 2.Power thansformation has found to be the best for the normalization of skewed distribution among others including log, square root and SMEMAX transformations. 3.Design low flows for the selected watersheds were derived by the Power and SMEMAX transformations. 4.Judging by the relative suitabilities of the Type III extremal distribution, Power and SMEMAX transformation, it was found that design low flows of all methods are closer to the observed data within 10 years of the return period and those of Power transformation can be acknowledzed as a reasonable one among others from the viewpoint of the median between values of Type m extremal distribution and SMEMAX transformation in addition to closing the observed than others over 10 years of the return period.

  • PDF

Comparative Analysis of Deisgn Low Flow by L-moment in the Weibull-3 and Wakeby distributions (Weibull-3 및 Wakeby 분포모형의 L-모멘트법에 의한 설계갈수량 비교분석)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.45-55
    • /
    • 2000
  • This study was carried out to derive optimal design low flows bythe Weibull-3 and Wakeby distributions for the partial consecutive duration series at seven watersheds along Han. nagdong, Geum Yeongsan and Seomjin river systems. L-coefficient of variation L-skewness and L-kurtosis were calculated by the L-moment ratio respectively. Parameters were estimated by the method of L-Moments with consecutive duration. Design low flows obtained by method of L-Moments using with consecutive duration, Design low flows obtained by method of L-Moments using different methods for plotting positions formulas in the Weibull-3 and Wakeby distributions were compared by the Root Mean Square Errors(RMSE). It has shown that design low flows derived by the method of L-moments using Weivull plotting position formula in Wakeby distribution were much closer to those of the observed data in comparison with those obtained by the methods of L-moments with the different formulas for plotting positions in Weibull-3 distribution from the viewpoint of Root Mean Square Errors.

  • PDF

Derivation of Design Low Flows by Transformation Method

  • 이순혁;명성진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.1-9
    • /
    • 1995
  • It is shown that two step power transformation is more efficient for the normalization of frequency distribution with the coefficient of skewness of zero in comparison with others including SMEMAX and power transformations. It is confirmed that the design low flows calculated using power and two step power transformations used in this study are generally nearer to the observed data as compared with those of SMEMAX transformation at all return periods in the applied watersheds of the Kum, Naktong and Yongsan rivers in Korea.

  • PDF

LARGE EDDY SIMULATION OF TURBULENT FLOWS AND DIRECT/DECOUPLED SIMULATIONS OF AEROACOUSTICS - PRESENT STATUS AND FUTURE PROSPECT -

  • Kato, Chisachi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.2-4
    • /
    • 2010
  • Due to rapid progress in the performance of high-end computers, numerical prediction of fluid flow and flow-induced sound is expected to become a vital tool for aero- and hydro- dynamic design of various flow-related products. This presentation focuses on the applications of large-scale numerical simulations to complex engineering problems with a particular emphasis placed on the low-speed flows. Flow field computations are based on a large eddy simulation that directly computes all active eddies in the flow and models only those eddies responsible for energy dissipations. The sound generated from low-speed turbulent flows are computed either by direct numerical simulation or by decoupled methods, according to whether or not the feedback effects of the generated sound onto the source flow field can be neglected. Several numerical examples are presented in order to elucidate the present status of such computational methods and discussion on the future prospects will also be given.

  • PDF

A study on the Flood Frequency Analyzed in Consideration of Low Outliers. (Low Outliers를 고려한 홍수빈도분석에 관한 연구)

  • 이순혁;홍성표;박명근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.62-70
    • /
    • 1988
  • This study was conducted to solve the problems for the unsuitable parameters and the uncertainty of design flood can be appeared by low outliers were inclined to the lower part from the trend of the balance of the data. Derivation of reasonable design flood was attempted finally by modification of low outliers with analysis of flood frequency by means of Log Pearson Type Ill distribution. Three subwatersheds were selected as studying basins with the annual maximum series including low outliers along Geum River basin. The results through this study were analyzed and summarized as follows. 1. Log Pearson Type In distribution was confirmed as a reasonable one by X$^2$ goodness of fit test at Gong Ju, Gyu Am, og Cheon watershed along Geum River basin. 2. Probable flood flows for each watershed were derivated by flood frequency curve with outliers. 3. Weighted skew coefficient for each watershed was calculated for the evaluation of freq- uency factor which is needed for the modification of low outlier. 4. It was confirrned that adjusted frequency curve has a lower tendency than that of deletion of low outlier in common at all watersheds. 5. Final probable flood flows were derivated by modification with evaluation of modified basic statistics for three watersheds. 6. In comparison with a frequency curve with modification and one with outlier, The former has a higher probable flood flow within three years of return periods than that of the latter, and vice versa over three years of return periods.

  • PDF

Computation of Turbulent Flows and Radiated Sound From Axial Compressor Cascade

  • Lee, Seungbae;Kim, Hooi-Joong;Kim, Jin-Hwa;Song, Seung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.272-285
    • /
    • 2004
  • The losses at off-design points from a compressor cascade occur due to the deviation from a design incidence angle at the inlet of the cascade. The self-noise from the blade cascade at off-design points comes from a separated boundary layer and vortex sheddings. If the incidence angle to the cascade increases, stalling in blades may occur and the noise level increases significantly. This study applied Large-Eddy Simulations (LES) using deductive and deductive dynamic SGS models to low Mach-number, turbulent flow with each incidence angle to the cascade ranging from -40$^{\circ}$ to +20$^{\circ}$ and compared numerical predictions with measured data. It was observed that the oscillating separation bubbles attached to the suction surface do not modify wake flows dynamically for cases of negative incidence angles. However, an incidence angle greater than 8$^{\circ}$ caused a separated vortex near the leading edge to be shed downstream and created stalling. The computed performance parameters such as drag coefficient and total pressure loss coefficient showed good agreement with experimental results. Noise from the cascade of the compressor is summarized as sound generated by a structure interacting with unsteady, turbulent flows. The hybrid method using acoustic analogy was observed to closely predict the measured overall sound powers and directivity patterns at design and off-design points of blade cascade.

Experimental Investigation on Separated Flows of Axial Flow Stator and Diagonal Flow Rotor

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki;Jin, Yingzi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.223-231
    • /
    • 2009
  • Experimental investigations were conducted for the internal flows of the axial flow stator and diagonal flow rotor. Corner separation near the hub surface and the suction surface of stator blade are mainly focused on. For the design flow rate, the values of the axial velocity and the total pressure at stator outlet decrease between near the suction surface and near the hub surface by the influence of corner wall. For the flow rate of 80-90% of the design flow rate, the corner separation of the stator between the suction surface and the hub surface is observed, which becomes widely spread for 80% of the design flow rate. At rotor outlet for 81% of the design flow rate, the low axial velocity region grows between near the suction surface of rotor and the casing surface because of the tip leakage flow of the rotor.

Design and Prediction of Three Dimensional Flows in a Low Speed Highly Loaded Axial Flow Fan

  • Liu, Xuejiao;Chen, Liu;Dai, Ren;Yang, Ailing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.94-104
    • /
    • 2013
  • This paper describes the design to increase the blade loading factor of a low speed axial flow fan from normal 0.42 to highly loaded 0.55. A three-dimensional viscous solver is used to model the flows in the highly-loaded and normal loaded stages over its operation range. At the design point operation the static pressure rise can be increased by 20 percent with a deficit of efficiency by 0.3 percent. In the highly loaded fan stage, the rotor hub flow stalls, and separation vortex extends over the rotor hub region. The backflow, which occurs along the stator hub-suction surface, changes the exit flow from the prescribed axial direction. Results in this paper confirm that the limitation of the two dimensional diffusion does not affect primarily on the fan's performance. Highly loaded fan may have actually better performance than its two dimensional design. Three dimensional designing approaches may lead to better highly loaded fan with controlled rotor hub stall.