• Title/Summary/Keyword: design forces

Search Result 2,246, Processing Time 0.03 seconds

Splitting of reinforced concrete panels under concentrated loads

  • Foster, Stephen J.;Rogowsky, David M.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.803-815
    • /
    • 1997
  • It is well understood that concentrated forces applied in the plane of a beam or panel (such as a wall or slab) lead to splitting forces developing within a disturbed region forming beyond the bearing zone. In a linearly elastic material the length of the disturbed region is approximately equal to the depth of the member. In concrete structures, however, the length of the disturbed region is a function of the orthotropic properties of the concrete-steel composite. In the detailing of steel reinforcement within the disturbed regions two limit states must be satisfied; strength and serviceability (in this case the serviceability requirement being acceptable crack widths). If the design requires large redistribution of stresses, the member may perform poorly at service and/or overload. In this paper the results of a plane stress finite element investigation of concentrated loads on reinforced concrete panels are presented. Two cases are examined (i) panels loaded concentrically, and (ii) panels loaded eccentrically. The numerical investigation suggests that the bursting force distribution is substantially different from that calculated using elastic design methods currently used in some codes of practice. The optimum solution for a uniformly reinforced bursting region was found to be with the reinforcement distributed from approximately 0.2 times the effective depth of the member ($0.2D_e$) to between $1.2D_e$ and $1.6D_e$. Strut and tie models based on the finite element analyses are proposed herein.

Effect of stiffeners on steel plate shear wall systems

  • Rahmzadeh, Ahmad;Ghassemieh, Mehdi;Park, Yeonho;Abolmaali, Ali
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.545-569
    • /
    • 2016
  • Stiffeners have widely been used in lateral load resisting systems to improve the buckling stability of shear panels in steel frames. However, due to major differences between plate girders and steel plate shear walls (SPSWs), use of plate girder equations often leads to uneconomical and, in some cases, incorrect design of stiffeners. Hence, this paper uses finite element analysis (FEA) to describe the effect of the rigidity and arrangement of stiffeners on the buckling behavior of plates. The procedures consider transverse and/or longitudinal stiffeners in various practical configurations. Subsequently, curves and formulas for the design of stiffeners are presented. In addition, the influence of stiffeners on the inward forces subjected to the boundary elements and the tension field angle is investigated as well. The results indicate that the effective application of stiffeners in SPSW systems not only improves the structural behavior, such as stiffness, overall strength and energy absorption, but also leads to a reduction of the forces that are exerted on the boundary elements.

Opportunities for Synergistic Collaboration between U.S. and Asia in Construction Business, Research, and Education

  • Liu, LiangY.
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.3-8
    • /
    • 2007
  • "The world is flat" as the popular author Thomas L. Friedman declares in his best belling book about the progress of business globalization in the $21^{st}$ century [3]. Construction projects and related businesses have been global since the 1800's, but it has never seen such rapid transformation in both scope and depth as in the past decade. Construction projects today often bring together international design talents, construction management firms, local and international labor forces, and global suppliers. On a visit to Dubai in the United Arab Emirates on the Persian Gulf, a person will experience the complexity of globalization of modern construction projects- with Arab owners, European engineering and design companies, American construction management teams, Korean general contractors, Jordanian subcontractors, and labor forces from Thailand, Indonesia, Turkey, and Sri Lanka. A count of material suppliers reveals over 60 countries involved, covering all continents. Indeed construction projects are getting more and more complex and competitive, as is the project execution. The trend toward globalization poses both challenges and opportunities to construction and engineering companies competing on a global scale. While global competition may be a threat to many companies, there are, however, many opportunities for synergistic collaborations that can create win-win scenarios for construction business, research, and education. This paper presents some of the opportunities between the U.S. and Asia in business integration, research collaboration on technologies, and educational development, which may mutually benefit countries on either side of the Pacific.

  • PDF

Design and Implementation of Group Behaviors for Doves by Using a Finite State Machine (유한상태기계를 사용한 비둘기들에 대한 집단행동의 설계 및 구현)

  • Lee, Jae-Moon;Cho, Sae-Hong
    • Journal of Korea Game Society
    • /
    • v.10 no.3
    • /
    • pp.93-102
    • /
    • 2010
  • This paper is to design and implement the system to simulate spontaneously the group behaviors for the various states of doves. To do this, the group behaviors of doves were divided into the four action models such as 'Flying', 'Landing', 'Eating' and 'Taking off'. The steering forces composing of each action model were found and each action model was designed by using the finite state machine. The designed system was implemented by integrating the Ogre engine. From the simulations of the implemented system, the values of the parameters for the steering forces were found so that it can represent the spontaneous group behaviors of doves.

A study of fracture of a fibrous composite

  • Mirsalimov, Vagif M.;Hasanov, Shahin H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.585-598
    • /
    • 2020
  • We develop design model within which nucleation and propagation of crack in a fibrous composite is described. It is assumed that under loading, crack initiation and fracture of material happens in the composite. The problem of equilibrium of a composite with embryonic crack is reduced to the solution of the system of nonlinear singular integral equations with the Cauchy type kernel. Normal and tangential forces in the crack nucleation zone are determined from the solution of this system of equations. The crack appearance conditions in the composite are formed with regard to criterion of ultimate stretching of the material's bonds. We study the case when near the fiber, the binder has several arbitrary arranged rectilinear prefracture zones and a crack with interfacial bonds. The proposed computational model allows one to obtain the size and location of the zones of damages (prefracture zones) depending on geometric and mechanical characteristics of the fibrous composite and applied external load. Based on the suggested design model that takes into account the existence of damages (the zones of weakened interparticle bonds of the material) and cracks with end zones in the composite, we worked out a method for calculating the parameters of the composite, at which crack nucleation and crack growth occurs.

Forced Vibration Analysis and Response Characteristics of a Vehicle Dull Progress Model (차량의 둔턱 진행 모델 강제진동해석과 응답특성)

  • Lee, Hyuk;Yoon, Moon-chul;Kim, Jong-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.49-57
    • /
    • 2020
  • The forced vibration characteristics for two impulse forces with time lag was discussed in the vehicle dull progress model. Detailed numerical analyses of the time domain were performed systematically. By the two exciting impulse forces, the responses of displacement, the velocity, and the acceleration were investigated in detail for the vehicle's vibration. Notably, the forced vibration responses in the time domain can be used to identify and monitor several vehicle vibration models. In order to define the responses of displacement, the velocity, and the acceleration, we applied a numerical technique (i.e., the Runge-Kutta-Gill method[1,2]). These variables were subsequently used to analyze the vehicle's vibration according to the time lapse and while it passed over a bump stock; moreover, the characteristics of the variables were analyzed in detail according to their force conditions. Finally, the intrinsic characteristics of the forced vibration were discussed in the context of the automobile model. Overall, our results indicate that the tested method can be successfully applied under different damped conditions.

Design Considerations for Tied Back Soil Landslide Suppressor Walls (사면붕괴 억제 타이백 벽체 설계에 대한 고찰)

  • Bae, Yoon-Shin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.41-51
    • /
    • 2009
  • This paper reviews many of the design considerations surrounding the topic of tiedback landslide suppressor walls primarily for soils app1ications. The design requires combining knowledge of many aspects of soil mechanics and geology to obtain a design a wall that fits site specific conditions. Many of the aspects necessary to complete the design are stil1 not comprehensively studied or understood. This paper provides an overview of the more traditional aspects of tieback wall design and a discussion of newer issues such as suppressor wall earth pressures and rotation of stresses due to tiebacks. An overview is also provided regarding the effect of seismic forces.

  • PDF

New Design of Cylindrical Cup Deep Drawing by Forming Analysis (원형컵 디프 드로잉의 성형해석에 의한 공정설계)

  • 정완진;김종호;류제구
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.647-653
    • /
    • 2003
  • A systematic approach for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process design strategy on the product quality. Different types of process design were chosen from initial blank of 100mm in diameter to make final cup of 50mm in diameter. In order to make this cup, we used 2-stage deep drawing. Forming analyses are carried out to find out better design in terms of drawing force. It is proposed that the process design, in which maximum drawing forces during successive operations are equal, is a more desirable one. Through experiment, it is found that the proposed case shows equivalent values in terms of maximum drawing force during successive operations in real process and can achieve the best product quality in terms of dimensional accuracy. Thus, it is shown that proposed design is very effective in the improvement of quality in drawn cups and may be extended to deep drawing with more stages.

Special cases in fatigue analysis of wind turbines

  • Gunes, Onur;Altunsu, Elif;Sari, Ali
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.501-508
    • /
    • 2021
  • The turbine industry demands a reliable design with affordable cost. As technological advances begin to support turbines of huge sizes, and the increasing importance of wind turbines from day to day make design safety conditions more important. Wind turbines are exposed to environmental conditions that can affect their installation, durability, and operation. International Electrotechnical Commission (IEC) 61400-1 design load cases consist of analyses involving wind turbine operating conditions. This design load cases (DLC) is important for determining fatigue loads (i.e., forces and moments) that occur as a result of expected conditions throughout the life of the machine. With the help of FAST (Fatigue, Aerodynamics, Structures, and Turbulence), an open source software, the NREL 5MW land base wind turbine model was used. IEC 61400-1 wind turbine design standard procedures assessed turbine behavior and fatigue damage to the tower base of dynamic loads in different design conditions. Real characteristic wind speed distribution and multi-directional effect specific to the site were taken into consideration. The effect of these conditions on the economic service life of the turbine has been studied.

Parametric Study for Assessment of Reaction Forces on Ship Docking Supports

  • Ryu, Cheol-Ho;Kim, Sung-Chan;Lee, Jang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.290-301
    • /
    • 2013
  • The docking analysis of a global ship structure is requested to evaluate its structural safety against the reaction forces at supports during docking works inside a dry dock. That problem becomes more important recently as the size of ships is getting larger and larger. The docking supports are appropriately arranged in a dock to avoid their excessive reaction forces which primarily cause the structural damages in docking a ship and, up to now, the structural safety has been assessed against the support arrangement by the finite element analysis (FEA) of a global ship structure. However, it is complicated to establish the finite element model of the ship in the current structural design environment of a shipyard and it takes over a month to finish the work. This paper investigates a simple and fast approach to carry out a ship docking analysis by a simplified grillage model and to assign the docking supports position on the model. The grillage analysis was considered from the motivation that only the reaction forces at supports are sufficient to assess their arrangement. Since the simplified grillage model of the ship cannot guarantee its accuracy quantitatively, modeling strategies are proposed to improve the accuracy. In this paper, comparisons between the proposed approach and three-dimensional FEA for typical types of ships show that the results from the present grillage model have reasonably good agreement with the FEA model. Finally, an integrated program developed for docking supports planning and its evaluation by the proposed approach is briefly described.