• Title/Summary/Keyword: design error

Search Result 5,330, Processing Time 0.03 seconds

A Design of Novel Instrumentation Amplifier Using a Fully-Differential Linear OTA (완전-차동 선형 OTA를 사용한 새로운 계측 증폭기 설계)

  • Cha, Hyeong-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • A novel instrumentation amplifier (IA) using fully-differential linear operational transconductance amplifier (FLOTA) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of a FLOTA, two resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into FLOTA converts into two same difference currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the FLOTA and realized the IA used commercial op-amp LF356. Simulation results show that the FLOTA has linearity error of 0.1% and offset current of 2.1uA at input dynamic range ${\pm}3.0V$. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the 60dB was 10MHz. The proposed IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 105mW at supply voltage of ${\pm}5V$.

Hardware optimized high quality image signal processor for single-chip CMOS Image Sensor (Single-chip CMOS Image Sensor를 위한 하드웨어 최적화된 고화질 Image Signal Processor 설계)

  • Lee, Won-Jae;Jung, Yun-Ho;Lee, Seong-Joo;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.103-111
    • /
    • 2007
  • In this paper, we propose a VLSI architecture of hardware optimized high quality image signal processor for a Single-chip CMOS Image Sensor(CIS). The Single-chip CIS is usually used for mobile applications, so it has to be implemented as small as possible while maintaining the image quality. Several image processing algorithms are used in ISP to improve captured image quality. Among the several image processing blocks, demosaicing and image filter are the core blocks in ISP. These blocks need line memories, but the number of line memories is limited in a low cost Single-chip CIS. In our design, high quality edge-adaptive and cross channel correlation considered demosaicing algorithm is adopted. To minimize the number of required line memories for image filter, we share the line memories using the characteristics of demosaicing algorithm which consider the cross correlation. Based on the proposed method, we can achieve both high quality and low hardware complexity with a small number of line memories. The proposed method was implemented and verified successfully using verilog HDL and FPGA. It was synthesized to gate-level circuits using 0.25um CMOS standard cell library. The total logic gate count is 37K, and seven and half line memories are used.

The Design of Feature Selection Classifier based on Physiological Signal for Emotion Detection (감성판별을 위한 생체신호기반 특징선택 분류기 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.206-216
    • /
    • 2013
  • The emotion plays a critical role in human's daily life including learning, action, decision and communication. In this paper, emotion discrimination classifier is designed to reduce system complexity through reduced selection of dominant features from biosignals. The photoplethysmography(PPG), skin temperature, skin conductance, fontal and parietal electroencephalography(EEG) signals were measured during 4 types of movie watching associated with the induction of neutral, sad, fear joy emotions. The genetic algorithm with support vector machine(SVM) based fitness function was designed to determine dominant features among 24 parameters extracted from measured biosignals. It shows maximum classification accuracy of 96.4%, which is 17% higher than that of SVM alone. The minimum error features selected are the mean and NN50 of heart rate variability from PPG signal, the mean of PPG induced pulse transit time, the mean of skin resistance, and ${\delta}$ and ${\beta}$ frequency band powers of parietal EEG. The combination of parietal EEG, PPG, and skin resistance is recommendable in high accuracy instrumentation, while the combinational use of PPG and skin conductance(79% accuracy) is affordable in simplified instrumentation.

Detection of Fracture Signals of Low Prestressed Steel Wires in a 10 m PSC Beam by Continuous Acoustic Monitoring Techniques (연속음향감지기법을 이용한 긴장력이 감소된 10 m PSC보의 PS 강선 파단음파 감지)

  • Youn, Seok-Goo;Lee, Chang-No
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2010
  • Corrosion of prestressing tendons and wire fractures in grouted post-tensioned prestressed concrete bridges have been considered as a serious safety problem. In bridge evaluation the condition of prestressing tendons should be inspected, and if corroded tendons are found, the loss of tendon area should be included when we calculate the ultimate strength. In the previous study, it was evaluated that continuous acoustic monitoring techniques could be considered as a reliable non-destructive method for detecting wire fractures of fully grouted post-tensioned prestressing tendons. In the present study, an experimental test was performed for detecting wire fractures of post-tensioned prestressing tendons which are prestressed lower than current design level. A 10 m prestressed concrete beam was fabricated, which included two tendons prestressed 66 percentage and 40 percentage of tensile strength, respectively. The corrosion of two tendons was induced by an accelerated corrosion equipment and the test beam was monitored by using seven acoustic sensors and a continuous acoustic monitoring system. From each prestressing tendon, two acoustic signals of wire fractures were successfully detected and source locations were estimated within 20 mm error. Based on the test results, it is considered that continuous acoustic monitoring techniques can be applied to detect low-prestressed wire fracture in fully grouted post-tensioned prestressed concrete beams.

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.

Hardware Design of High Performance In-loop Filter in HEVC Encoder for Ultra HD Video Processing in Real Time (UHD 영상의 실시간 처리를 위한 고성능 HEVC In-loop Filter 부호화기 하드웨어 설계)

  • Im, Jun-seong;Dennis, Gookyi;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.401-404
    • /
    • 2015
  • This paper proposes a high-performance in-loop filter in HEVC(High Efficiency Video Coding) encoder for Ultra HD video processing in real time. HEVC uses in-loop filter consisting of deblocking filter and SAO(Sample Adaptive Offset) to solve the problems of quantization error which causes image degradation. In the proposed in-loop filter encoder hardware architecture, the deblocking filter and SAO has a 2-level hybrid pipeline structure based on the $32{\times}32CTU$ to reduce the execution time. The deblocking filter is performed by 6-stage pipeline structure, and it supports minimization of memory access and simplification of reference memory structure using proposed efficient filtering order. Also The SAO is implemented by 2-statge pipeline for pixel classification and applying SAO parameters and it uses two three-layered parallel buffers to simplify pixel processing and reduce operation cycle. The proposed in-loop filter encoder architecture is designed by Verilog HDL, and implemented by 205K logic gates in TSMC 0.13um process. At 110MHz, the proposed in-loop filter encoder can support 4K Ultra HD video encoding at 30fps in realtime.

  • PDF

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

Evaluation of Ballistic Resistance Performance by Thickness and Proportion of Magnetic Aggregate of Concrete (콘크리트 두께와 자철광 함량에 따른 방탄 성능 평가)

  • Lim, Cha-Yeon;Kim, Kuk-Joo;Roh, Jeong-Heon;Jang, Chang-Su;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2020
  • The main purpose of protective facility for small military unit is to provide the protection of not all the weapons system but the near-miss bullet in Korean army. In particular about the small caliber bullets, especially KM80 in Korea, there were many studies that both of the experiential and structural design methods dose not reflect enough the military threat. For that reason, a new equation to calculate effective anti-piercing depths for RC slabs against small caliber bullets is proposed in earlier research with actual shooting test. But, the test only considers the strength of concrete without the thickness of concrete, types of aggregate, the angle of yaw of bullet, high-strength concrete, etc. Therefore, this study evaluated the ballistic resistance performance by thickness and proportion of magnetic aggregate of concrete. As a result, we identified two major statistical estimations that the error of piercing depth by the angle of yaw of bullet could be cancelled by barrage and the thickness and proportion of magnetic aggregate of concrete dose not effect on the protection ability of concrete structure.

Identification of the Sectional Distribution of Sound Source in a Wide Duct (넓은 덕트 단면내의 음원 분포 규명)

  • Heo, Yong-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • If one identifies the detailed distribution of pressure and axial velocity at a source plane, the position and strength of major noise sources can be known, and the propagation characteristics in axial direction can be well understood to be used for the low noise design. Conventional techniques are usually limited in considering the constant source characteristics specified on the whole source surface; then, the source activity cannot be known in detail. In this work, a method to estimate the pressure and velocity field distribution on the source surface with high spatial resolution is studied. The matrix formulation including the evanescent modes is given, and the nearfield measurement method is proposed. Validation experiment is conducted on a wide duct system, at which a part of the source plane is excited by an acoustic driver in the absence of airflow. Increasing the number of evanescent modes, the prediction of pressure spectrum becomes further precise, and it has less than -25 dB error with 26 converged evanescent modes within the Helmholtz number range of interest. By using the converged modal amplitudes, the source parameter distribution is restored, and the position of the driver is clearly identified at kR = 1. By applying the regularization technique to the restored result, the unphysical minor peaks at the source plane can be effectively suppressed with the filtering of the over-estimated pure radial modes.

Design of a multimedia interface for the description of human error caused nuclear power plant trips (인적오류로 인한 원자력발전소 고장정지 사건묘사를 위한 멀티미디어 인터페이스 설계)

  • 박근옥
    • Proceedings of the ESK Conference
    • /
    • 1993.10a
    • /
    • pp.65-75
    • /
    • 1993
  • 원자력발전소에서 발생하는 고장정지 사건에 내포된 인적오류의 발생내용을 흥미있고 현장감 있게 묘사시킴과 동시에 종사원들의 인적오류를 저감시키기 위한 새로운 교육훈련방 법으로써 멀티미디어 기술의 사용을 고려하였다. 즉, 컴퓨터 환경하에서 숫자와 텍스트, 음 향 및 음성, 그래픽, 애니메이션, 화상 등의 미디어를 사용하여 인적오류로 인한 고장정지 사건발생의 내용을 전달하는 새로운 교육훈련 방법을 사용하는 것이다. 이를 위하여 고장정 지 사건과 관련한 원자력발전소 구성정보와 종사원의 활동정보를 입출력하기 위한 멀티미디어 인터페이스를 설계하였다. 설계는 멀티미디어 제공환경 구축과 인터페이스 운영논리 설정의 두단계로 구성한 절차에 따라 수행하였다. 멀티미디어 인터페이스는 원자력발전소 구성정보를 설계하여 저장시켜둔 퍼스널 컴퓨터 환경하에서 운영되며, 입력 및 출력의 두가지 인터페이스 를 갖는다. 입력 인터페이스는 인적 오류를 포함한 고장정지 사건의 발생내용을 숫자, 텍스트, 음성 미디어로 받아들여 출력 인터페이스에서 사용될 수 있도록 미디어 결합을 수행하고, 컴퓨터 저장장치에 저장하는 기능을 수행한다. 출력 인터페이스는 저장장치에 기록된 내용을 판독하여 고장정지의 진행경위와 인적오류의 발생내용을 숫자, 문자, 텍스트, 음성, 음향, 그래픽 애니메 이션, 정지화상으로 원자력발전소 종사원들에게 출력시켜 주는 기능을 수행한다. 멀티미디어 출력정보는 사용자가 CRT 화면에 제공되는 버튼 또는 Click Touch 메뉴를 사용함에 따라 이전, 이후의 출력정보로 전이할 수 있도록 하였다.상대적으로 중요한 검사 항목으로 나타났다. 또한 상대적 중요도 결과를 적용한 적성검사 성적이 적용하지 않은 적성검사 성적에 비해 비행성적에 대한 예측 능력이 좋은 것으로 평가되었다.al age)가 있다는 것을 의미하는 것이다. 한편, 생산현장에서는 자동화, 기계화가 진보되어 육체적인 노동이 경감된 결과, 중고령자라도 할 수 있는 작업이 많아지고 있다. 또, VDT (Visual Dislay Terminal) 작업과 같은 정보처리 작업의 수요가 증가하여 그 인재의 부족이 지적되고 있다. 따라서 중고령자의 기능을 조사하여 어떠한 작업에 적합한가를 판단하는 것이 중요한 과제로 되었다. 그러나 노동에는 많은 기능이 관여 하고, 그 내용에 따라서 요구되는 기능이 서로 다르기 때문에 노동적응능력의 기본적인 기능으로 보여지는 것에 좁혀서 작업능력의 연령증가 변화에 대하여다원적 평가를 하는 것이 실제적이라고 할 수 있다. 따라서 본 연구에서는 인간이 가지고 있는 다수의 기능중에서 수지교 치성과 연령증가와의 관계를 조사한다. 만약 연령증가 만으로 수지교치성을 평가 할 수 없는 경우에는 어떠한 요인이 수지기민성의 변화에 영향을 미치는가를 검토한다.t list)에서 자동적으로 사건들의 순서가 결정되도록 확장하였으며, 설비 제어방식에 있어서도 FIFO, LIFO, 우선 순위 방식등을 선택할 수 있도록 확장하였다. SIMPLE는 자료구조 및 프로그램이 공개되어 있으므로 프로그래머가 원하는 기능을 쉽게 추가할 수 있는 장점도 있다. 아울러 SMPLE에서 새로이 추가된 자료구조와 함수 및 설비제어 방식등

  • PDF