• Title/Summary/Keyword: design criterion

Search Result 1,387, Processing Time 0.022 seconds

Substitution Elasticity and Gains from Trade Variety in South Korea

  • Kichun Kang
    • Journal of Korea Trade
    • /
    • v.26 no.7
    • /
    • pp.1-18
    • /
    • 2022
  • Purpose - Recent international studies have largely focused on measuring the welfare gains from increased trade varieties. To adequately capture the variety gains, it is of importance to estimate the elasticity of substitution between varieties of trade goods because it is one of the key parameters to determine the magnitude of the variety gains. Using the import data of South Korea, this paper shows that the elasticities vary substantially across the estimators, which affects the magnitude of the gains from trade. Design/methodology - Empirical studies working on the gains from trade variety have heavily depended on the estimation methods for the elasticity of substitution between trade varieties, developed by Feenstra (1994) and refined by Broda and Weinstein (2006). We estimate and compare the estimated elasticities for 8,945 HS 10 goods of South Korea, obtained from the three estimation methods: Feenstra's weighted least square (F-WLS), Feenstra's feasible generalized least square (F-FGLS), and Broda and Weinstein's feasible generalized least square (BW-FGLS). Findings - Using the estimated elasticities from the F-FGLS, considered as a suitable estimator, A typical Korean consumer saved 228 dollars per year by the greater access to new import varieties. This leads to gains from imported variety of 2.06% of GDP. In 2017, a typical Korean consumer would gain by 611 dollars, compared with 2000. China is the country with the largest contribution (28.4%), followed by Japan and USA. About 50% of all the welfare gains come from the imports from the three main trade partners. The Southern Asian countries are more important to the South Korean welfare gain than the Western European countries. Originality/value - Existing studies have chosen one of the methods without any criterion for the choice and then estimated the elasticities of substitution between varieties of trade goods. This paper focuses on the estimation specifications and methods as the cause of the disparity in estimated elasticities and welfare gains from trade variety. According to the Ramsey RESET and White tests, the F-FGLS estimates are relatively better compared to the F-WLS and BW-FGLS estimates. As another contribution, this paper provides the first measure of the welfare gains from trade variety for South Korea, using the estimated elasticities of substitution between trade varieties.

Fabrication of Organic-Inorganic Nanocomposite Blade for Dicing Semiconductor Wafer (반도체 웨이퍼 다이싱용 나노 복합재료 블레이드의 제작)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Min, Kyung-Yeol;Lee, Jeong-Ick;Lee, Kee-Sung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • Nanocomposite blade for dicing semiconductor wafer is investigated for micro/nano-device and micro/nano-fabrication. While metal blade has been used for dicing of silicon wafer, polymer composite blades are used for machining of quartz wafer in semiconductor and cellular phone industry in these days. Organic-inorganic material selection is important to provide the blade with machinability, electrical conductivity, strength, ductility and wear resistance. Maintaining constant thickness with micro-dimension during shaping is one of the important technologies fer machining micro/nano fabrication. In this study the fabrication of blade by wet processing of mixing conducting nano ceramic powder, abrasive powder phenol resin and polyimide has been investigated using an experimental approach in which the thickness differential as the primary design criterion. The effect of drying conduction and post pressure are investigated. As a result wet processing techniques reveal that reliable results are achievable with improved dimension tolerance.

Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints (복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석)

  • Kim, Won-Seok;Shin, Kum-Chel;Lee, Jung-Ju
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • One of the primary factors limiting the application of composite-metal adhesively bonded joints in structural design is the lack of a good evaluation tool for the interfacial strength to predict the load bearing capacity of boned joints. In this paper composite-steel adhesion strength is evaluated in terms of stress intensity factor and fracture toughness of the interface corner. The load bearing capacity of double lap joints, fabricated by co-cured bonding of composite-steel adherends has been determined using fracture mechanical analysis. Bi-material interface comer stress singularity and its order are presented. Finally stress intensities and fracture toughness of the wedge shape bi-material interface corner are determined. Double lap joint failure locus and its mixed mode crack propagation criterion on $K_1-K_{11}$ plane have been developed by tension tests with different bond lengths.

A Study on Ontology Design to Improve Record Service of a Cultural Heritage: Focused on Hwangnyongsa Temple Records (문화재 중심 기록물 서비스 개선을 위한 온톨로지 설계: 황룡사 관련 기록물 중심으로)

  • Sijeong, Kim;Sanghee, Choi
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.4
    • /
    • pp.241-268
    • /
    • 2022
  • Records related to a certain cultural heritage are concrete evidence that prove the value of the cultural heritage and become a criterion for long-term preservation of its records. The value of the records is as important as cultural heritage value. In the case of specific cultural heritage with national or socially important values, various studies are conducted on cultural heritage as one theme, and various programs about cultural heritage are developed. However, it is difficult to grasp the scope, record types, and contents of the records because they have been distributed and managed in many institutes. They also appear in various forms. As a solution to these problems, this study collected records of a major cultural heritage with social and historical values such as Hwangnyongsa from 11 public institutions and web services and analyzed the types of records, activities related to the records, and metadata. Through data analysis, an ontology that can understand the range and relationship of the entire record was suggested so that the record can be understood with a focus on specific cultural heritage.

The Body Appreciation Scale-2: Validation of a Korean version among older adults (The Body Appreciation Scale-2의 노인 남녀 대상 한국어 타당성 검증 연구)

  • Minsun Lee
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.3
    • /
    • pp.277-295
    • /
    • 2023
  • The Body Appreciation Scale-2 (BAS-2) measures the extent to which individuals feel, accept, and respond to their own bodies in a positive manner. Given the research need to explore positive body image and its associations with various sociocultural factors and related consequences among individuals with various cultural backgrounds, several studies have established the psychometric properties and factor structures of the BAS-2 in different languages and samples with different characteristics. The current study investigated the psychometric properties and measurement invariance of a Korean version of the BAS-2 in an older Korean adult population (599 older Korean adults with the average age of 70 years). Data were collected using both online and offline (paper-based) survey questionnaires. The results of exploratory factor analyses and confirmatory factor analysis evidenced the unidimensional factor structure and measurement invariance of the Korean BAS-2 among older Korean men and women, after dropping item 1. Scalar invariance was supported across gender, and men and women did not significantly differ in observed mean scores of the Korean BAS-2. The results also supported good convergent validity and criterion validity. Incremental validity was demonstrated by predicting self-esteem over and above measures of age, BMI, subjective financial and health status, body esteem, and ageism. High internal reliability and test-retest reliability over a 2-week period were confirmed. Overall, the results of this study support the reliable use of a Korean BAS-2 to measure positive body image among older Koreans after excluding item 1.

An Experimental Study to develope the Subsidence Equation for Riprap Protection around the Pier (교각에 설치된 사석보호공의 침하량 산정식 도출에 관한 실험 연구)

  • Ji, Un;Yeo, Woon Kwang;Lee, Won Min;Kang, Joon Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.63-71
    • /
    • 2009
  • Riprap filter should be installed around the pier to prevent riprap subsidence due to sediment winnowing or leaching between the riprap and bed layers. However, riprap protection without filters is commonly applied in the field because of ambiguous specifications and technical and economical difficulties to install the filter layer. Therefore, the hydraulic experiments were conducted in this study to measure and analyze the riprap subsidence quantitatively with different conditions for thickness of riprap layer, approached velocity, sizes of riprap and bed material. As the velocity was increased and size of bed material and thickness of riprap layer were decreased, the subsidence was increased. Consequently, the dimensionless riprap subsidence equation was derived using the synthesized experimental results. The results of this study could be employed as a standard criterion or predictor to evaluate the subsidence stability.

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

A Study on the Injection Mold with Superhydrophobic Surface Properties Using Nanosecond Laser Machining (나노초 레이저 가공을 활용한 초소수 표면 특성을 가지는 사출 금형에 관한 연구)

  • Jung-Rae Park;Hye-Jin Kim;Ji-Young Park;Si-Myung Sung;Seo-Yeon Hong;Ki-Hyeok Song
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.48-54
    • /
    • 2023
  • In this study, an injection mold with ultra-small surface properties was manufactured using nanosecond laser processing. A superhydrophobic characteristic analysis was performed on the PET specimen manufactured through this. To this end, a hydrophobic pattern was defined using the Cassie-Baxter model. The defined features were selected with a spot diameter of 25um and pitch spacing of 30um and 35um. As a result of the basic experiment, it was confirmed that the fine pattern shape had an aspect ratio of 1:1 when the pitch interval was 35um and 20 iterations. Through the determined processing conditions, a hydrophobic pattern was implemented on the core surface of KP4. A specimen with a hydrophobic pattern was produced through injection molding. The height of the molded hydrophobic pattern is 20 ㎛ less than the depth of the core and the contact angle measurement results are 92.1°. This is a contact angle smaller than the superhydrophobic criterion. Molding analysis was performed to analyze the cause of this, and it was analyzed that the molding was not molded due to the lack of pressure in the injection machine.

Development of Effective Test Method for Positioning Accuracy of Armed Vehicle Inertial Navigation System (기동화력장비 관성항법장치의 효과적인 위치정확도 시험방법 개발)

  • Kim, Sung Hoon;Bae, In Hwa;Kim, Sang Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.619-632
    • /
    • 2023
  • Purpose: The main function of INS (Inertial Navigation System) is to measure the position of an armed vehicle and its performance is confirmed through the positioning accuracy test of Korean Defense Standards (KDS). The current standards, however, do not provide clear test methods and the conditions for performing positioning accuracy tests. Accordingly, the purpose of this study is to develop a new method for positioning accuracy test which would be effective. Methods: In this study, a new INS positioning accuracy test method is suggested based on the analysis of test data collected through a statistical experiment known as central composite design. For the positioning accuracy experiment of K105A1, a self-propelled artillery, two factors of driving velocity and driving distance are considered. Results: Based on the analysis of experimental data, a regression model for the positioning error is fitted and the positioning accuracy test of INS is so developed to maximize the positioning error. The standard proximity rate is used as an additional test criterion to evaluate the performance level of INS. Conclusion: The proposed new positioning accuracy test for INS has the advantage of finding the nonconforming items effectively. It is also expected to be utilized for the other similar INS positioning accuracy tests.

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.