• Title/Summary/Keyword: design criterion

Search Result 1,385, Processing Time 0.028 seconds

Adaptive Structure of Wavelet Neural Network with Geometric Growing Criterion (기하학적인 성장기준을 적용한 웨이브렛 신경망의 적응 구조 설계)

  • 서재용;김성주;조현찬;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.449-453
    • /
    • 2001
  • In this paper, we propose an algorithm to design the adaptive structure of wavelet neural network with F-projection and geometric growing criterion. Geometric growing criterion consists of estimated error criterion considering local error and angle criterion which attempts to assign a wavelet function that is nearly orthogonal to all other existing wavelet functions. These criteria provide a methodology that a network designer can construct wavelet neural network according to one's intention. We apply the proposed constructing algorithm of the adaptive structure of wavelet neural network to approximation problems of 1-D and 2-D function, and evaluate the effectiveness of the proposed algorithm.

  • PDF

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.

Dependency of Tangential Friction Angle and Cohesion of Non-linear Failure Criteria on the Intermediate Principal Stress (비선형 암석 파괴조건식의 접선 마찰각과 점착력의 중간주응력 의존성)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.219-227
    • /
    • 2013
  • Although Mohr-Coulomb failure criterion has limitations in that it is a linear criterion and the effect of the intermediate principal stress on failure is ignored, this criterion has been widely accepted in rock mechanics design. In order to overcome these shortcomings, the Hoek-Brown failure criterion was introduced and recently a number of 3-D failure criteria incorporating the effect of the intermediate principal stress on failure have been proposed. However, in many rock mechanics designs, the possible failure of rock mass is still evaluated based on Mohr-Coulomb criterion and most of practitioners are accustomed to understanding the strength of rock mass in terms of the internal friction angle and cohesion. Therefore, if the equivalent Mohr-Coulomb strength parameters of the advanced failure criteria are calculated, it is possible to take advantage of the advanced failure criteria in the framework of the Mohr-Coulomb criterion. In this study, a method expressing the tangential Mohr-Coulomb strength parameters in terms of the stress invariant is proposed and it is applied to the generalized Hoek-Brown criterion and the HB-WW criterion. In addition, a new approach describing the geometric meaning of the ${\sigma}_2$-dependency of failure criteria in 3-D principal stress space is proposed. Implementation examples of the proposed method show that the influence of the intermediate principal stress on the tangential friction angle and cohesion of the HB-WW criterion is considerable, which is not the case for the 2-D failure criterion.

The Power Rating Design of Inductively Coupled Plasma Light Source and The Electrical Dependency Between Parameters (ICP 광원의 정격용량 설계 요소와 전기적 의존성)

  • Kim, Hyun-Il;Park, Dae-Hee;Chang, Hong-Soon;Baek, Soo-Hyun;Yim, Youn-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.453-457
    • /
    • 2008
  • We studied on the dependency of parameters which those were used to design a ballast of ICP light source. These parameters were derived from Barkhausen criterion equation about the oscillating condition of ballast. Comparing with a change of turns, we can suggest that a change of l is suitable to control a $I_p$ of an ICP light source. According to the Z-l equation, we can find an optimum rating power of ICP light sources corresponding to l.

Numerical Study on Analysis and Design of Tube Hydroforming Process by the FEM (유한요소법에 의한 관재 하이드로포밍 공정 해석 및 설계를 위한 수치적 연구)

  • Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.302-311
    • /
    • 2002
  • A generalized numerical approach based on the finite element method to analysis and design of hydroforming process is proposed in this paper. The special attention is focused on comparison of an implicit and an explicit finite element method widely used for hydroforming simulation. Furthermore, in order to meet the increasing real needs for prediction of forming limit, a ductile fracture criterion combined with finite element method is introduced and then applied to hydroforming process of an automobile lower m Consequently, the numerical analysis and design for hydroforming process presented here will facilitate the development and application of the tube hydrofoniung process to a new level.

Analytical and Experimental studies on Dielectric Characteristics of High Voltage Superconducting Machines in Liquid Nitrogen (액체질소를 사용하는 초전도 고전압 전력기기의 절연 특성 연구)

  • Na, J.B.;Ko, T.K.;Kang, H.;Seok, B.Y.;Kim, T.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.46-50
    • /
    • 2011
  • The electrical insulation design of high voltage superconducting fault current limiters (SFCLs) should be confirmed to be applied for the stabilization of the power grid. This paper describes numerical analysis and AC dielectric experiments for developing high voltage SFCLs. The electric field distributions between applied high voltage part and ground were calculated by finite element method (FEM) simulation tool and AC criterion of liquid nitrogen at 200 kPa was calculated from correlation between the field utilization factor and FEM simulation results. This paper deals with ceonceptual insulation design of a 154 kV class single-phase no-inductively wound solenoid type SFCL which was focused on gap distance between the cryostat and superconducting coils. Furthermore, the shield ring effect was confirmed to reduce maximum electric field at applied high voltage part.

Moment curvature method for fire safety design of steel beams

  • Yu, H.X.;Richard Liew, J.Y.
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.227-246
    • /
    • 2004
  • This paper presents a moment-curvature method that accounts for the strength deterioration of steel at elevated temperature in estimating the response of steel beams exposed to fire. A modification to the EC4 method is proposed for a better estimation of the temperature distribution in the steel beam supporting a concrete slab. The accuracy of the proposed method is verified by comparing the results with established test results and the nonlinear finite element analysis results. The beam failure criterion based on a maximum strain of 0.02 is proposed to assess the limiting temperature as compared to the traditional criteria that rely on deflection limit or deflection rate. Extensive studies carried out on steel beams with various span lengths, load ratios, beam sizes and loading types show that the proposed failure criterion gives consistent results when compared to nonlinear finite element results.

H filter design for offshore platforms via sampled-data measurements

  • Kazemy, Ali
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.187-194
    • /
    • 2018
  • This paper focuses on the $H_{\infty}$ filter design problem for offshore steel jacket platforms. Its objective is to design a full-order state observer for offshore platforms in presence of unknown disturbances. To make the method more practical, it is assumed that the measured variables are available at discrete-time instants with time-varying sampling time intervals. By modelling the sampling intervals as a bounded time-varying delay, the estimation error system is expressed as a time-delay system. As a result, the addressed problem can be transformed to the problem of stability of dynamic error between the system and the state estimator. Then, based on the Lyapunov-Krasovskii Functional (LKF), a stability criterion is obtained in the form of Linear Matrix Inequalities (LMIs). According to the stability criterion, a sufficient condition on designing the state estimator gain is obtained. In the end, the proposed method is applied to an offshore platform to show its effectiveness.

A Study on Application of High-Strength Vertical Stiffeners to Plate Girder (판형교에 고강도 수직보강재 적용에 관한 연구)

  • Chang, Kyong-Ho;Kang, Jae-Hoon;Jang, Gab-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.137-144
    • /
    • 2004
  • Recently, as steel structures become higher and more long-spanned, application of high-strength steels is increasing gradually. However, criteria and example for design of high-strength steel are not built up. exiting criteria for structural steels is not proper for economical design of high-strength steel. Moreover, exiting criteria will be decrease the fatigue performance of steel bridge using high-strength steel. Therefore, criterion for application of high-strength steel must be established. In this paper, the behavior of plate girder using high-strength vertical stiffeners was clarified by carrying out layer elastic-plastic finite element analysis using finite deformation theory. In order to optimize the design and construction of plate girder using high-strength vertical stiffener, criterion for application of high-strength vertical stiffener is proposed.

  • PDF

Theoretical Development and Design Aids for Expansion Joint Spacings

  • Lee, Hong-Jae;Lee, Cha-Don
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.101-111
    • /
    • 2000
  • It has been a well known fact that buildings having inappropriate expansion joints in their spacings may be subject to exterior damages due to extensive cracks on the outer walls under service loads and structural damages due to excessive moment induced by temperature changes at ultimate load conditions. Unfortunately, consistent code provisions are unavailable regarding spacings of expansion joints from different foreign structural codes. And a more serious problem is that no quantitative measurements on spacings is given in our codes for building structures. In order to establish a rational guideline on the spacing of expansion joints, theoretical approaches are taken in this study. The developed theoretical formula is, then, converted to a design chart for structural designers' convenience in its use. The chart considers both service and ultimate load stages.

  • PDF