• Title/Summary/Keyword: desiccation tolerance

Search Result 16, Processing Time 0.022 seconds

The Site-Directed A184S Mutation in the HTH Domain of the Global Regulator IrrE Enhances Deinococcus radiodurans R1 Tolerance to UV Radiation and MMC Shock

  • Zhang, Chen;Zhou, Zhengfu;Zhang, Wei;Chen, Zhen;Song, Yuan;Lu, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2125-2134
    • /
    • 2015
  • IrrE is a highly conserved global regulator in the Deinococcus genus and contributes to survival from high doses of UV radiation, ionizing radiation, and desiccation. Drad-IrrE and Dgob-IrrE from Deinococcus radiodurans and Deinococcus gobiensis I-0 each share 66% sequence identity. However, Dgob-IrrE showed a stronger protection phenotype against UV radiation than Drad-IrrE in the D. radiodurans irrE-deletion mutant (ΔirrE), which may be due to amino acid residues differences around the DNA-binding HTH domain. Site-directed mutagenesis was used to generate a Drad-IrrE A184S single mutant, which has been characterized and compared with the ΔirrE mutant complemented strain with Drad-irrE, designated ΔirrE-E. The effects of the A184S mutation following UV radiation and mitomycin C (MMC) shock were determined. The A184S mutant displayed significantly increased resistance to UV radiation and MMC shock. The corresponding A184 site in Dgob-IrrE was inversely mutated, generating the S131A mutant, which exhibited a loss of resistance against UV radiation, MMC shock, and desiccation. qPCR analysis revealed that critical genes in the DNA repair system, such as recA, pprA, uvrA, and ddrB, were remarkably induced after UV radiation and MMC shock in the ΔirrE-IE and A184S mutants. These data suggested that A184S improves the ability against UV radiation and MMC shock, providing new insights into the modification of IrrE. We speculated that the serine residue may determine the efficiency of DNA binding, leading to the increased expression of IrrE-dependent genes important for protection against DNA damage.

Evaluation of Cold Tolerance of Blueberry (Vaccinium corymbosum L.) and Diagnosis of Freezing Injury Using Timber Moisture Meter (블루베리의 내한성 평가 및 목재수분계측기를 이용한 동해피해 진단)

  • Kim, Ki-Deog;Lee, Jun-Gu;Ryu, Myeong-Sang;Yoo, Dong-Lim;Kwon, Young-Seok;Lee, Jong-Nam
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.354-361
    • /
    • 2012
  • This study was conducted to evaluate on the freezing tolerance of introduced blueberry cultivars in Korea and to investigate availability of portable timber moisture meter for simple and rapid diagnosis of blueberry-shoot damage by freezing during wintering. Frost tolerance of blueberry cultivars showed big difference that rates of blueberry-shoot death were widely distributed from about 0% to 100% after wintering. Optical density in TTC reduction of blueberry twig treated low temperature was low in order of $-40^{\circ}C$ < $-21^{\circ}C$ < $4^{\circ}C$. Hardiness evaluation of visible injury in the cross-sectional surface color did not agree with that of rates of blueberry-shoot death during wintering. Lowest water content of blueberry stem measured by timber moisture tester during wintering was about 15%. During wintering, water contents of blueberry stems were higher at lower part of tree, but were low at end part of stems, and then when the blueberry grew again for spring, the water content gradually increased to 20~40%. Water content of blueberry stem with freezing injury during wintering decreased to under 5% by desiccation. Therefore it is assummed that the moisture content of blueberry stem injured by freezing during wintering was about under 14%, and it is expected that portable timber moisture meter could be available for rapid diagnosis of blueberry freezing injury in field.

Tolerance of Korean Cronobacter spp. (Enterobacter sakazakii) Isolates to Dessication (국내에서 분리한 Cronobacter spp.(Enterobacter sakazakii)의 건조내성 특성)

  • Lee, Eun-Jin;Ryu, Tae-Hwa;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.681-686
    • /
    • 2009
  • Cronobacter spp. (Enterobacter sakazakii) is known to be highly resistant to dry conditions than any other Enterobacteriaeae. In this study, one hundred and ten Korean Cronobacter isolates were characterized to find out their survival characteristics under conditions of desiccation and humidity. Thirty percentage strains of the isolates showed high resistance to desiccation exposed on the metal surface for eight hours by half survival of the initial number, whileas less than 10% strains showed dry sensitivity by less one log scale survival among seven log scales. Finally, more than 90% of the strains consisted of dry-resistant and dry-intermediate groups. The same tendencies were evident in a 15-day exposure. Dry-resistant and intermediate strain groups showed 3 log scale survival among 5 log initial numbers in the powdered infant formula for 30 days, which were more resistant than on the above metal surface exposed. So, almost the isolate strains showed high resistance to dry condition. Dry-resistant and intermediate groups exposed on the metal surface formed a biofilm at the beginning, and the dry-sensitive group showed biofilm formation mainly only after a 7-day exposure. However, without a time difference in formation of biofilm, the dry-resistant and sensitive isolates seemed to similar biofilm formation activity. Most of the isolates showed very low survival at 75% relative humidity in 48 hours; however, they showed high resistance by 60% survival at 40% relative humidity. The Cronobacter isolates showed high resistance to desiccation on the metal surface and in the powdered infant formula, but low survival at high relative humidity. Therefore, high humidity may be a control method for Cronobacter in food processing environments.

Effects of Indoor Relative Humidity Conditions on the Growth of Arachniodes aristata and Pyrrosia lingua in Native Ferns (실내 습도조건이 가는쇠고사리, 석위의 생육에 미치는 영향)

  • Bang, Kwang-Ja;Ju, Jin-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.2
    • /
    • pp.34-38
    • /
    • 2002
  • This studies were performed to determine the effects of indoor relative humidity conditions on the growth of Arachniodes aristata and Pyrrosia lingua in native fern and investigate an applicable possibility of indoor plants. The response of Arachniodes aristata and Pyrrosia lingua was evaluated in growth chamber (KG-8407-87) to 3 relative humidity and 3 soils. Relative humidity was applied to 25%, 50%, 90%; soils were prepared based on soil mixture(SM), top field soil(TF), masa soil(MS). Results of experiments are as follows ; 1. Under a low humidity condition, such as 25%, Water contents, chlorophyll content, ornamental value of Arachniodes aristata and Pyrrosia lingua decreased much more a 50-90%. 2. The growth of Arachniodes aristata were best in pots under a soil mixture(SM) but Pyrrosia lingua were field top soil(FT) under 25%. It seemed that Pyrrosia lingua due to tolerance of desiccation more than Arachniodes aristata. Though these studies, coefficient of relative humidity and soil was plays an important role in Arachniodes aristata and Pyrrosia lingua growth in indoor environments.

Benthic Marine Algae in the East Coast of Korea : Flora, Distribution and Community Structure (한국 동해 연안역의 저서 해조류 : 해조상, 분포 및 군집구조)

  • NAM Ki Wan;KIM Young Sik;KIM Young Hwan;SOHN Chul Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.5
    • /
    • pp.727-743
    • /
    • 1996
  • To know the floristic composition, vortical distribution and community structure of marine benthic algae inhabiting in the intertidal and subtidal zones of Yongil Bay, east coast of Korea, the study has performed using the quadrat method along a transect line from July, 1995 to June, 1996. In this area, a total of 144 species including 2 new red algae to Korea was found: 5 blue-green, 18 green, 20 brown and 101 red algae. The representative species throughout the year were Ulva pertusa, Gelidium amansii and Symphyocladia latiuscula. Dominant species were Sargassum thunbergii in spring, U. pertusa in summer and autumn. In winter, Chondrus ocellatus and Monostroma grevillei occurred dominantly. The standing crop exhibited mean value as $185.8g/m^2$ dry weight. Maximum value was recorded in spring $(267.3g/m^2)$ and minimum was observed in winter $(93.7g/m^2)$. Shannon's species diversity (H') and evenness (J') as maximum value were recorded in spring, whereas minimum values were shown in winter. Vertical distribution, rerognized by cluster analysis based on relative coverage of the species, could be divided into two or three algal groups except spring. In general, green algae (M. grevillei, Capsosiphon fulvescens, U. pefusa, Enteromorpha compressa) and brown algae (Sargassum fulvellum, S. thunbergii) were represented in the upper and middle zone and red algae (G. amansii, C. ocellatus, S. latiuscula, Crateloupia okamurae, Pachymeniopsis eilliptica) in the lower zone. The algal community varied according to season and environmental conditions. Particularly, seasonal variation of vortical distribution seemed to be affected primarily by water temperature. Also seasonal tidal level and tolerance of algal species to desiccation appeared to be associated with it in this area.

  • PDF

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.