• Title/Summary/Keyword: descriptor systems

Search Result 138, Processing Time 0.033 seconds

Automatic Generation of Protocol Test Cases from Estelle Using Design/CPN (Design/CPN을 이용한 Estelle로부터의 프로토콜 시험열 자동 생성 기법)

  • Lee, Hyeon-Jeong;Jo, Jin-Gi;U, Seong-Hui;Lee, Sang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3070-3076
    • /
    • 1999
  • Petri net is one of the effective modeling techniques which analyzes and designs concurrent and asynchronous systems. CPN is an extended Petri net which has color tokens. In this paper, we propose a new test case generation method using CPN. It transforms Estelle Specification into CPN, which is applicable to Design/CPN. It also generates UIO and subtour from OG and descriptor, which are resulted from Design/CPN. Using the proposed method, we can get more improved test coverage than existing methods. Therefore, more effective protocol conformance testing could be conducted. The test case generating method will be the basis of the automatic testing environmented.

  • PDF

Dorsal Hand Vein Identification Based on Binary Particle Swarm Optimization

  • Benziane, Sarah Hachemi;Benyettou, Abdelkader
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.268-284
    • /
    • 2017
  • The dorsal hand vein biometric system developed has a main objective and specific targets; to get an electronic signature using a secure signature device. In this paper, we present our signature device with its different aims; respectively: The extraction of the dorsal veins from the images that were acquired through an infrared device. For each identification, we need the representation of the veins in the form of shape descriptors, which are invariant to translation, rotation and scaling; this extracted descriptor vector is the input of the matching step. The optimization decision system settings match the choice of threshold that allows accepting/rejecting a person, and selection of the most relevant descriptors, to minimize both FAR and FRR errors. The final decision for identification based descriptors selected by the PSO hybrid binary give a FAR =0% and FRR=0% as results.

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

Korean Traffic Speed Limit Sign Recognition in Three Stages using Morphological Operations (형태학적 방법을 사용한 세 단계 속도 표지판 인식법)

  • Chirakkal, Vinjohn;Kim, SangKi;Kim, Chisung;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.516-517
    • /
    • 2015
  • The automatic traffic sign detection and recognition has been one of the highly researched and an important component of advanced driver assistance systems (ADAS). They are designed especially to warn the drivers of imminent dangers such as sharp curves, under construction zone, etc. This paper presents a traffic sign recognition (TSR) system using morphological operations and multiple descriptors. The TSR system is realized in three stages: segmentation, shape classification and recognition stage. The system is designed to attain maximum accuracy at the segmentation stage with the inclusion of morphological operations and boost the computation time at the shape classification stage using MB-LBP descriptor. The proposed system is tested on the German traffic sign recognition benchmark (GTSRB) and on Korean traffic sign dataset.

  • PDF

Region Division for Large-scale Image Retrieval

  • Rao, Yunbo;Liu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5197-5218
    • /
    • 2019
  • Large-scale retrieval algorithm is problem for visual analyses applications, along its research track. In this paper, we propose a high-efficiency region division-based image retrieve approaches, which fuse low-level local color histogram feature and texture feature. A novel image region division is proposed to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, for optimizing our region division retrieval method, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed. Moreover, we propose an extended Canberra distance method for images similarity measure to increase the fault-tolerant ability of the whole large-scale image retrieval. Extensive experimental results on several benchmark image retrieval databases validate the superiority of the proposed approaches over many recently proposed color-histogram-based and texture-feature-based algorithms.

Structure-Control Combined Optimal Design with S/A Collocation (센서/엑츄에이터 배치를 고려한 구조-제어 통합최적설계)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.69-74
    • /
    • 2004
  • A structure-control combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

  • PDF

Genetic Algorithm based Relevance Feedback for Content-based Image Retrieval

  • Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.13-18
    • /
    • 2008
  • This paper explores a content-based image retrieval framework with relevance feedback based on genetic algorithm (GA). This framework adopts GA to learn the user preferences using the similarity functions defined for all available descriptors. The objective of the GA-based learning methods is to learn the user preferences using the similarity functions and to find a descriptor combination function that best represents the user perception. Experiments were performed to validate the proposed frameworks. The experiments employed the natural image databases and color and texture descriptors to represent the content of database images. The proposed frameworks were compared with the other two relevance feedback methods regarding effectiveness in image retrieval tasks. Experiment results demonstrate the superiority of the proposed method.

  • PDF

Image Clustering using Color, Texture and Shape Features

  • Sleit, Azzam;Abu Dalhoum, Abdel Llatif;Qatawneh, Mohammad;Al-Sharief, Maryam;Al-Jabaly, Rawa'a;Karajeh, Ola
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.211-227
    • /
    • 2011
  • Content Based Image Retrieval (CBIR) is an approach for retrieving similar images from an image database based on automatically-derived image features. The quality of a retrieval system depends on the features used to describe image content. In this paper, we propose an image clustering system that takes a database of images as input and clusters them using k-means clustering algorithm taking into consideration color, texture and shape features. Experimental results show that the combination of the three features brings about higher values of accuracy and precision.

A Real-time Pedestrian Detection based on AGMM and HOG for Embedded Surveillance

  • Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1289-1301
    • /
    • 2015
  • Pedestrian detection (PD) is an essential task in various applications and sliding window-based methods utilizing HOG (Histogram of Oriented Gradients) or HOG-like descriptors have been shown to be very effective for accurate PD. However, due to exhaustive search across images, PD methods based on sliding window usually require heavy computational time. In this paper, we propose a real-time PD method for embedded visual surveillance with fixed backgrounds. The proposed PD method employs HOG descriptors as many PD methods does, but utilizes selective search so that it can save processing time significantly. The proposed selective search is guided by restricting searching to candidate regions extracted from Adaptive Gaussian Mixture Model (AGMM)-based background subtraction technique. Moreover, approximate computation of HOG descriptor and implementation in fixed-point arithmetic mode contributes to reduction of processing time further. Possible accuracy degradation due to approximate computation is compensated by applying an appropriate one among three offline trained SVM classifiers according to sizes of candidate regions. The experimental results show that the proposed PD method significantly improves processing speed without noticeable accuracy degradation compared to the original HOG-based PD and HOG with cascade SVM so that it is a suitable real-time PD implementation for embedded surveillance systems.

Robust Object Tracking in Mobile Robots using Object Features and On-line Learning based Particle Filter (물체 특징과 실시간 학습 기반의 파티클 필터를 이용한 이동 로봇에서의 강인한 물체 추적)

  • Lee, Hyung-Ho;Cui, Xuenan;Kim, Hyoung-Rae;Ma, Seong-Wan;Lee, Jae-Hong;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.562-570
    • /
    • 2012
  • This paper proposes a robust object tracking algorithm using object features and on-line learning based particle filter for mobile robots. Mobile robots with a side-view camera have problems as camera jitter, illumination change, object shape variation and occlusion in variety environments. In order to overcome these problems, color histogram and HOG descriptor are fused for efficient representation of an object. Particle filter is used for robust object tracking with on-line learning method IPCA in non-linear environment. The validity of the proposed algorithm is revealed via experiments with DBs acquired in variety environment. The experiments show that the accuracy performance of particle filter using combined color and shape information associated with online learning (92.4 %) is more robust than that of particle filter using only color information (71.1 %) or particle filter using shape and color information without on-line learning (90.3 %).