• Title/Summary/Keyword: descriptor matching

Search Result 87, Processing Time 0.023 seconds

Image Feature Point Selection Method Using Nearest Neighbor Distance Ratio Matching (최인접 거리 비율 정합을 이용한 영상 특징점 선택 방법)

  • Lee, Jun-Woo;Jeong, Jea-Hyup;Kang, Jong-Wook;Na, Sang-Il;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.124-130
    • /
    • 2012
  • In this paper, we propose a feature point selection method for MPEG CDVS CE-7 which is processing on International Standard task. Among a large number of extracted feature points, more important feature points which is used in image matching should be selected for the compactness of image descriptor. The proposed method is that remove the feature point in the extraction phase which is filtered by nearest neighbor distance ratio matching in the matching phase. We can avoid the waste of the feature point and employ additional feature points by the proposed method. The experimental results show that our proposed method can obtain true positive rate improvement about 2.3% in pair-wise matching test compared with Test Model.

Automatic Matching of Multi-Sensor Images Using Edge Detection Based on Thinning Algorithm (세선화 알고리즘 기반의 에지검출을 이용한 멀티센서 영상의 자동매칭)

  • Shin, Sung-Woong;Kim, Jun-Chul;Oh, Kum-Hui;Lee, Young-Ran
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.407-414
    • /
    • 2008
  • This study introduces an automatic image matching algorithm that can be applied for the scale different image pairs consisting of the satellite pushbroom images and the aerial frame images. The proposed method is based on several image processing techniques such as pre-processing, filtering, edge thinning, interest point extraction, and key-descriptor matching, in order to enhance the matching accuracy and the processing speed. The proposed method utilizes various characteristics, such as the different geometry of image acquisition and the different radiometric characteristics, of the multi-sensor images. In addition, the suggested method uses the sensor model to minimize search area and eliminate false-matching points automatically.

Efficient Representation and Matching of Object Movement using Shape Sequence Descriptor (모양 시퀀스 기술자를 이용한 효과적인 동작 표현 및 검색 방법)

  • Choi, Min-Seok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.391-396
    • /
    • 2008
  • Motion of object in a video clip often plays an important role in characterizing the content of the clip. A number of methods have been developed to analyze and retrieve video contents using motion information. However, most of these methods focused more on the analysis of direction or trajectory of motion but less on the analysis of the movement of an object itself. In this paper, we propose the shape sequence descriptor to describe and compare the movement based on the shape deformation caused by object motion along the time. A movement information is first represented a sequence of 2D shape of object extracted from input image sequence, and then 2D shape information is converted 1D shape feature using the shape descriptor. The shape sequence descriptor is obtained from the shape descriptor sequence by frequency transform along the time. Our experiment results show that the proposed method can be very simple and effective to describe the object movement and can be applicable to semantic applications such as content-based video retrieval and human movement recognition.

Improving Matching Performance of SURF Using Color and Relative Position (위치와 색상 정보를 사용한 SURF 정합 성능 향상 기법)

  • Lee, KyungSeung;Kim, Daehoon;Rho, Seungmin;Hwang, Eenjun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.394-400
    • /
    • 2012
  • SURF is a robust local invariant feature descriptor and has been used in many applications such as object recognition. Even though this algorithm has similar matching accuracy compared to the SIFT, which is another popular feature extraction algorithm, it has advantage in matching time. However, these descriptors do not consider relative location information of extracted interesting points to guarantee rotation invariance. Also, since they use gray image of original color image, they do not use the color information of images, either. In this paper, we propose a method for improving matching performance of SURF descriptor using the color and relative location information of interest points. The location information is built from the angles between the line connecting the centers of interest points and the orientation line constructed for the center of each interest points. For the color information, color histogram is constructed for the region of each interest point. We show the performance of our scheme through experiments.

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.

Optical Flow Orientation Histogram for Hand Gesture Recognition (손 동작 인식을 위한 Optical Flow Orientation Histogram)

  • Aurrahman, Dhi;Setiawan, Nurul Arif;Oh, Chi-Min;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.517-521
    • /
    • 2008
  • Hand motion classification problem is considered as basis for sign or gesture recognition. We promote optical flow as main feature extracted from images sequences to simultaneously segment the motion's area by its magnitude and characterize the motion' s directions by its orientation. We manage the flow orientation histogram as motion descriptor. A motion is encoded by concatenating the flow orientation histogram from several frames. We utilize simple histogram matching to classify the motion sequences. Attempted experiments show the feasibility of our method for hand motion localization and classification.

  • PDF

A Study on the Automatic Signature Verification System Using Stable Feature Information (안정화된 특징정보를 이용한 서명 검증 시스템에 관한 연구)

  • 박준성;조성원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.246-246
    • /
    • 2000
  • 다른 생체기반 검증시스템에 비해 서명 검증 시스템에서 가장 문제점은 불안정한 특징 정보를 가진다는 것이다. 그러나, 서명은 인류역사를 통해 인간에게 가장 익숙한 방법이므로 사용자에게 거부감이 없어 수많은 연구가 진행되고 있다. 본 논문에서는 이 문제를 해결하기 위해 좀더 안정화 되어 있고 유용한 특징정보를 사용하여 서명 검증 시스뎀을 구현한다

  • PDF

A Study on the 3D Shape Reconstruction Algorithm of an Indoor Environment Using Active Stereo Vision (능동 스테레오 비젼을 이용한 실내환경의 3차원 형상 재구성 알고리즘)

  • Byun, Ki-Won;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • In this paper, we propose the 3D shape reconstruction method that combine the mosaic method and the active stereo matching using the laser beam. The active stereo matching method detects the position information of the irradiated laser beam on object by analyzing the color and brightness variation of left and right image, and acquires the depth information in epipolar line. The mosaic method extracts feature point of image by using harris comer detection and matches the same keypoint between the sequence of images using the keypoint descriptor index method and infers correlation between the sequence of images. The depth information of the sequence image was calculated by the active stereo matching and the mosaic method. The merged depth information was reconstructed to the 3D shape information by wrapping and blending with image color and texture. The proposed reconstruction method could acquire strong the 3D distance information, and overcome constraint of place and distance etc, by using laser slit beam and stereo camera.

  • PDF

Filtering Feature Mismatches using Multiple Descriptors (다중 기술자를 이용한 잘못된 특징점 정합 제거)

  • Kim, Jae-Young;Jun, Heesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • Feature matching using image descriptors is robust method used recently. However, mismatches occur in 3D transformed images, illumination-changed images and repetitive-pattern images. In this paper, we observe that there are a lot of mismatches in the images which have repetitive patterns. We analyze it and propose a method to eliminate these mismatches. MDMF(Multiple Descriptors-based Mismatch Filtering) eliminates mismatches by using descriptors of nearest several features of one specific feature point. In experiments, for geometrical transformation like scale, rotation, affine, we compare the match ratio among SIFT, ASIFT and MDMF, and we show that MDMF can eliminate mismatches successfully.

A Frame-Based Video Signature Method for Very Quick Video Identification and Location

  • Na, Sang-Il;Oh, Weon-Geun;Jeong, Dong-Seok
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.281-291
    • /
    • 2013
  • A video signature is a set of feature vectors that compactly represents and uniquely characterizes one video clip from another for fast matching. To find a short duplicated region, the video signature must be robust against common video modifications and have a high discriminability. The matching method must be fast and be successful at finding locations. In this paper, a frame-based video signature that uses the spatial information and a two-stage matching method is presented. The proposed method is pair-wise independent and is robust against common video modifications. The proposed two-stage matching method is fast and works very well in finding locations. In addition, the proposed matching structure and strategy can distinguish a case in which a part of the query video matches a part of the target video. The proposed method is verified using video modified by the VCE7 experimental conditions found in MPEG-7. The proposed video signature method achieves a robustness of 88.7% under an independence condition of 5 parts per million with over 1,000 clips being matched per second.