• Title/Summary/Keyword: dermal function

Search Result 49, Processing Time 0.023 seconds

Comparative study on tissue responses of 3 resorbable membranes in rats (흡수성 차폐막의 조직반응에 관한 비교연구)

  • Hong, Seung-Bum;Kwon, Young-Hyuk;Lee, Man-Sup;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.475-488
    • /
    • 2002
  • The purpose of this study is to evaluate histologically the resorption and tissue response of various resorbable collagen membranes used for guided tissue regeneration and guided bone regeneration, using a subcutaneous model on the dorsal surface of the rat. In this study, 10 Sprague-Dawley male rats (mean BW 150gm) were used and the commercially available materials included acellular dermal matrix allograft, porcine collagen membrane, freeze-dried bovine dura mater. Animals were sacrificed at 2,6 and 8 weeks after implantation of various resorbable collagen membranes. Specimens were prepared with Hematoxylin-Eosin stain for light microscopic evaluation. The results of this study were as follows: 1. Resorption : Inner portion of porcine collagen membrane was resorbed a lot at 6 weeks, but its function was being kept for infiltration of another tissues were not observed. Freeze-dried bovine dura mater and acellular dermal allograft were rarely resorbed and kept their structure of outer portion for 8 weeks. 2. Inflammatory reactions : Inflammatory reaction was so mild and foreign body reaction didn't happen in all of resorbable collagen membranes, which showed their biocompatibility. 3. In all of resorbable collagen membranes, multinuclcated giant cells by foreign body reactions were not observed. Barrier membranes have to maintain their function for 4-6 weeks in guided tissue regeneration and at least 8 weeks in guided bone regeneration. According to present study, we can find all of the resorbable collagen membranes kept their function and structure for 8 weeks and were rarely resorbed. Foreign body reaction didn't happen and inflammatory reaction was so mild histologically. Therefore, all of collagen membranes used in this experiment were considered proper resorbable membranes for guided tissue regeneration and guided bone regeneration.

The Effects of Bangpungtongsungsan Extract to the Skin Damage on Mice Model after Atopic Dermatitis Elicitation (방풍통성산(防風通聖散)이 아토피 피부염을 유발한 동물모델의 피부 손상에 미치는 영향)

  • Son, Jung-Min;Hong, Seung-Ug
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.1 s.32
    • /
    • pp.99-114
    • /
    • 2007
  • Objectives : Atopic dermatitis has a close relationship with damage of skin barrier function. To investigate the effects of Bangpungtongsungsan(BT) extract to the skin damage on mice model after atopic dermatitis elicitation, this study was done through forcing injury to mice's skin. Methods : The BALB/c mice were distributed into three groups: control(CON) group, atopic dermatitis(AD)-elicited group, Bangpungtongsungsan(BT)-treated group. AD-elicited and BT-treated group were caused AD according to the method of Christophers E., Mrowietz and Minehiro. The BT extract was administered for 48 hours to BT-treated group. We observed changes of external dermal formation, eosinophils in vasculature, lipid formation in stratum corneum, distribution of ceramide, distribution of capillary, $I{\kappa}B$ kinase(IKK) and induce nitric oxide synthase(iNOS) mRNA expression. We used the statistical methods of student t-test(p<0.05). Results : After dispensing BT extract into the AD-elicited group, the number of eosinophil as an atopic index in mice noticeably decreased and dermal injury decreased. Also the decrease of hyperplasia, degranulated mast cells, angiogenesis and substance P were shown. The lipid lamellae, lipid protect formation, were repaired and the distribution of ceramide which inhibit protein kinase C(PKC) activation increased, and the PKC caused inhibition of nuclear $factor(NF)-{\kappa}B$ activation. As a result of inhibition of $NF-{\kappa}B$ activation, iNOS production were inhibited and apoptotic cell were increased. Moreover the decrease of IKK and iNOS mRNA expression in BT-treated RAW 264.7 cell were noted. Conclusion : BT mitigated skin damage on mice model after atopic dermatitis elicitation through recovering skin barrier function and inhibiting nuclear $factor(NF)-{\kappa}B$ activation.

  • PDF

The potential inhibitory effect of ginsenoside Rh2 on mitophagy in UV-irradiated human dermal fibroblasts

  • Lee, Hyunji;Kong, Gyeyeong;Park, Jisoo;Park, Jongsun
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.646-656
    • /
    • 2022
  • Background: In addition to its use as a health food, ginseng is used in cosmetics and shampoo because of its extensive health benefits. The ginsenoside, Rh2, is a component of ginseng that inhibits tumor cell proliferation and differentiation, promotes insulin secretion, improves insulin sensitivity, and shows antioxidant effects. Methods: The effects of Rh2 on cell survival, extracellular matrix (ECM) protein expression, and cell differentiation were examined. The antioxidant effects of Rh2 in UV-irradiated normal human dermal fibroblast (NHDF) cells were also examined. The effects of Rh2 on mitochondrial function, morphology, and mitophagy were investigated in UV-irradiated NHDF cells. Results: Rh2 treatment promoted the proliferation of NHDF cells. Additionally, Rh2 increased the expression levels of ECM proteins and growth-associated immediate-early genes in ultraviolet (UV)-irradiated NHDF cells. Rh2 also affected antioxidant protein expression and increased total antioxidant capacity. Furthermore, treatment with Rh2 ameliorated the changes in mitochondrial morphology, induced the recovery of mitochondrial function, and inhibited the initiation of mitophagy in UV-irradiated NHDF cells. Conclusion: Rh2 inhibits mitophagy and reinstates mitochondrial ATP production and membrane potential in NHDF cells damaged by UV exposure, leading to the recovery of ECM, cell proliferation, and antioxidant capacity.

Dermal Absorption and Body Distribution of $^{125}I-rhEGF$ in Hairless Mice (헤어리스마우스 피부 국소에 적용된 $^{125}I-rhEGF$의 피부흡수 및 체내 분포)

  • Lee, Jeong-Uk;Chung, Seok-Jae;Lee, Min-Hwa;Shim, Chang-Koo
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.737-748
    • /
    • 1997
  • Distribution of rhEGF in the skin, plasma and several organ tissues following topical application of $^{125}I-rhEGF$ (0.4${\mu}$Ci) solution in 25% Pluronic F-127 on 154$mm^2$ normal and damaged (burned and stripped) skins of hairless mice was examined. The radioactivity in the stripped skin tissues increased as a function of time, and was 10-20 times higher than that in the normal and burned skins. The fractions of intact drug in the skin tissues were 40-60% for the normal and burned skins, and 60-80% for the stripped skin. It indicates that the stratum corneum layer behaves as a barrier for the dermal penetration of the drug. The radioactivity in the plasma was much higher for the stripped skin than for the normal and burned skins. However, the concentration of intact drug in the stripped skin was comparable to those in the normal and burned skins indicating most severe degradation (or metabolism) of the drug in the stripped skin. As a result, the fraction of intact drug in the plasma was lowest for the stripped skin (<10%). Body organ distribution of the drug was much higher for the stripped skin. The concentration in the stomach. Both in total radioactivity and intact drug, showed more than 10-times higher value than in the other organs (liver, kidney and spleen). The fraction of intact drug in each organ tissue was below 10-20%. And generally lowest for the stripped skin. The lowest fraction of the drug for the stripped skin could not be explained by the activity of the aminopeptidases in the skin since it was lower for the stripped skin than for the normal skin. Thereover, the fraction of intact drug appears to be determined by the balance between dermal uptake and systemic elimination of the drug, for example. The mechanism of dermal uptake of rhEGF was examined by topical applying 200${\mu}$l of 25% Pluronic F-127 solution containing 0.4 ${\mu}$Ci of $^{125}I-rhEGF$ and 0.14${\mu}$Ci of $^{14}C$-inulin (a marker of passive diffusion). The radioactivity of $^{125}I-rhEGF$ at each sampling time point (0.5, 1, 2, 4 and 8hr) was correlated (p<0.05) with the corresponding radioactivity of $^{14}C$-inulin. It appears to indicate the rhEGF may be uptaken into the skins mainly by the passive diffusion. This hypothesis was supported by the constant specific binding of EGF to the skin homogenates regardless of the skin models. Receptor mediated endocytosis (RME) appears to contribute negligibly, if any, to the overall uptake process.

  • PDF

Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the AKT/β-Catenin Signaling Pathway

  • Lee, Yu Rim;Bae, Seunghee;Kim, Ji Yea;Lee, Junwoo;Cho, Dae-Hyun;Kim, Hee-Sik;An, In-Sook;An, Sungkwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1830-1840
    • /
    • 2019
  • Loliolide is one of the most ubiquitous monoterpenoid compounds found in algae, and its potential therapeutic effect on various dermatological conditions via agent-induced biological functions, including anti-oxidative and anti-apoptotic properties, was demonstrated. Here, we investigated the effects of loliolide on hair growth in dermal papilla (DP) cells, the main components regulating hair growth and loss conditions. For this purpose, we used a three-dimensional (3D) DP spheroid model that mimics the in vivo hair follicle system. Biochemical assays showed that low doses of loliolide increased the viability and size of 3D DP spheroids in a dose-dependent manner. This result correlated with increases in expression levels of hair growth-related autocrine factors including VEGF, IGF-1, and KGF. Immunoblotting and luciferase-reporter assays further revealed that loliolide induced AKT phosphorylation, and this effect led to stabilization of β-catenin, which plays a crucial role in the hair-inductive properties of DP cells. Further experiments showed that loliolide increased the expression levels of the DP signature genes, ALP, BMP2, VCAN, and HEY1. Furthermore, conditioned media from loliolide-treated DP spheroids significantly enhanced proliferation and the expression of hair growth regulatory genes in keratinocytes. These results suggested that loliolide could function in the hair growth inductivity of DP cells via the AKT/β-catenin signaling pathway.

Skin biopsy: an emerging method for small nerve fiber evaluation

  • Sohn, Eun Hee
    • Annals of Clinical Neurophysiology
    • /
    • v.20 no.1
    • /
    • pp.3-11
    • /
    • 2018
  • Skin biopsy and staining the specimens with immuno-reactive markers has been proven to be a useful method to demonstrate the pathologic status of small nerve fibers. Quantification of intraepidermal nerve fiber density using anti-protein gene product 9.5 antibody is a standard method to diagnose small fiber neuropathy. Skin biopsy also makes it possible to differentiate the nerve fibers according to their function by using different markers. Quantification of dermal structures with different types of nerve fibers could reveal the pathophysiologic mechanism of the disease state.

Effect of Ascorbic Acid, Silicon, Fe, Proline and Lysine on Proliferation and Collagen Synthesis in the Human Dermal Fibroblast Cell (HS27) (비타민 C, Silicon, 철분, Proline 및 Lysine의 처리가 피부 섬유아세포의 증식 및 Collagen I과 III의 발현에 미치는 효과 비교)

  • Kim, Sun-Ah;Lee, Jin-Ah;Kim, Jung-Min;Kim, Hyun-Ae;Kim, Young-Ae;Yun, Hye-Jeong;Cho, Yun-Hi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1492-1498
    • /
    • 2009
  • In the dermis, fibroblast plays an important role in the turnover of the dermal extracellular matrix. Collagen I and III, which are the most important dermal proteins of the extracellular matrix, function as a stabilizing scaffold of dermal connective tissues, as well as a regulator of differentiation and migration of dermal cells. In this study, we investigated the effect of various nutrients, such as ascorbic acid, silicon, Fe, lysine and proline which function as cofactors or building blocks on collagen synthesis. When the physiological concentrations of ascorbic acid (0-100 ${\mu}M$), silicon (0-50 ${\mu}M$), Fe (0-50 ${\mu}M$), lysine (0-150 ${\mu}M$) and proline (0-300 ${\mu}M$) were treated at HS27 for either 3 or 5 days, 5 day treatment of ascorbic acid at the low concentration (5-10 ${\mu}M$) increased the expression of collagen I and III protein by 115-1300% without increasing cell proliferation. 3 or 5 days treatment of Fe increased the expression of collagen I and III proteins up to 323% in parallel with cell proliferation by 164%. However, cell proliferation and expression of collagen I and III protein in silicon treated HS27 did not differ. Proline and lysine only increased cell proliferation up to 247.9%. Taken together, we demonstrate that the physiological concentrations of ascorbic acid and Fe enhance the expression of collagen I and III protein for treatment of 3 or 5 days.

The Effect of Photomodulation in Human Dermal Fibroblasts (피부 섬유아세포에서 광자극의 효과)

  • Kim, Mi Na;Kwak, Taek Jong;Kang, Nae Gyu;Lee, Sang Hwa;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Skin is exposed to sunlight or artificial indoor light on a daily. The reached solar light on the earth surface consist of 50% visible light and 45% infrared (IR) except for ultra violet (UV). The negative effects of UV including UVB and UVA have been steadily investigated within the last decades. However, little is known about the effects of visible or IR light. In this study, we irradiated human dermal fibroblasts using light emitting diode (LED) to investigate the optimal parameter for enhancing cell growth and collagen synthesis. We found that red of 630 nm and green of 520 nm enhance the cell proliferation, but irradiation with purple and blue light exerts toxic effects. To examine the response of irradiation time and light intensity on the fibroblasts, cells were exposed to red or green light with intensities from 0.05 to $0.75mW/cm^2$. Procollagen secretion was increased of 1.4 fold by 10 min irradiation, while 30 min treatment decreased the collagen synthesis of dermal fibroblasts. Treatment with red of $0.3mW/cm^2$ and green of 0.15 and $0.3mW/cm^2$ resulted in enhancement of collagen mRNA. Lastly, we investigated the combinatorial effect of red and green light on dermal fibroblasts. The sequential irradiation of red and green light is an efficient way for the purpose of the increase in the number of fibroblasts than single light treatment. On the other hand, the exposure of red light alone was more effective method for enhancing of collagen secretion. Our study showed that specific light parameters accelerated cell proliferation, gene expression and collagen secretion on human dermal fibroblasts. In conclusion, we demonstrate that light exposure with specific parameter has beneficial effects on the function of dermal fibroblasts, and suggests the possibility of its cosmetically and clinical application.

The Phytoestrogenic Effect of Daidzein in Human Dermal Fibroblasts (피부 섬유아세포에서 다이드제인의 파이토에스트로겐 효과)

  • Kim, Mi-Sun;Hong, Chan Young;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.279-287
    • /
    • 2014
  • Estrogen deficiency results in a reduction of skin quality and function in postmenopausal women. Over the past decade, many studies have supported that estrogen provides anti-aging effects as a result of the ability of estrogen to prevent skin collagen decline, restore skin elasticity, and increase skin hydration in postmenopausal women skin. Due to their structural similarity with estrogen, isoflavones have been called phytoestrogens. Photoprotective effects of isoflavones are well established while their estrogenic-like activities are not fully understood in human skin. In this study, we investigated whether daidzein, an effective isoflavone, has phytoestrogenic activity and induces transcriptional change of extracellular matrix components in dermal fibroblasts. We examined the luciferase activity of daidzein and ${\beta}$-estradiol using transiently transfected NIH3T3-ERE cells. The estrogenic receptor-dependent transcriptional activity was increased in a dose-dependent manner when treated with daidzein, with a maximum of 2.5-fold induction at $10{\mu}g/mL$ of daidzein compared with non-treated control. In addition, daidzein significantly in creased the expressions of collagen type I, collagen type IV, elastin, and fibrillin-1 in human dermal fibroblasts. By comparing with the effects of ${\beta}$-estradiol through out all the experiments, we confirmed that daidzein had estrogenic activity and function in fibroblasts. These results suggest that daidzein-based application, having both photoprotective and phytoestrogenic effects, may be a powerful approach for skin anti-aging of postmenopausal women.

The effect of two Terpenoids, Ursolic acid and Oleanolic acid on epidermal permeability barrier and simultaneously on dermal functions

  • Lim Suk Won;Jung Sung Won;Ahn Sung Ku;Kim Bora;Ryoo Hee Chang;Lee Seung Hun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.205-232
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1 mg/ml UA or 0.1-1 mg/ml ONA after tape stripping, and TEWL (Transepidermal water loss) was measured . The recovery rate increased in those UA or ONA treated groups (0.1 mg/ml UA and 0.5 mg/ml ONA) at 6 h more than $20\%$ compared to vehicle treated group (p<0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from f week without TEWL alteration (p<0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent $(ONA{\geq}UA>Vehicle)$. LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Veh). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via $PPAR\;\alpha$. Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either $ONA\;(10{\mu}M)$ or UA $(10{\mu}M)$ for 24h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via $PPAR\;{\alpha}$. Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.