• Title/Summary/Keyword: depth-averaged flow model

Search Result 75, Processing Time 0.026 seconds

Analysis of Velocity Structures and Shear Stresses by Parameters and Internal Boundary Conditions of Depth-averaged Flow Model (수심평균 유동 모형의 매개변수와 내부 경계조건에 따른 유속구조 및 전단력 분석)

  • Song, Chang Geun;Woo, In Sung;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.54-60
    • /
    • 2013
  • In this study, a finite element model based on the SU/PG scheme was developed to solve shallow-water equations and the influences of parameters and internal boundary conditions on depth-averaged flow behavior were investigated. To analyze the effect of roughness coefficient and eddy viscosity on flow characteristics, the developed model was applied to rectangular meandering channel with two bends, and transverse velocities and water depth distributions were examined. As the roughness coefficient adjacent to wall increased, the velocities near the wall decreased, and the reduced velocities were compensated by the expanding mid-channel velocities. In addition, the flow characteristics around a circular cylinder were analyzed by varying the internal boundary conditions as free slip and no slip. The assignment of slip condition changed the velocity distribution on the cylinder surface and reduced the magnitude of the shear stress up to one third.

Flow-Guider Applied to Controlling Current in a Bay (도류제에 의한 항만내 조류제어 연구)

  • 양찬규;홍기용
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.141-151
    • /
    • 1997
  • This paper deals with a numerical study of flow-guider applied to controlling current in a bay. Two dimensional numerical model for tidal currents based on the depth averaged equation is developed and standard k-.epsilon. model is adopted to determine the turbulence diffusion. Equations are described in a generalized coordinate system to be implemented by non-staggered grid system and discretized by using finite volume method. Unsteady flow is simulated by fully implicit scheme. Hybrid scheme and central differencing are used to compute the convective terms and source terms, respectively. The tidal current in a rectangular bay is simulated and it gives satisfactory results. The realistic and distinct models of a large structure placed in bay are also exemplified with or without flow-guiders. The simulation results show that the flow-guider gives the residual tidal current in the bay by the different flux with respect to the direction of tidal current.

  • PDF

Application of A Depth-Averaged Two-Dimensional Mathematical Model to Tidal Computations in the Estuary near Gunsan Port (수심평균 2차원 수학적 모형(TIFS)을 이용한 금강하구 및 연해의 조석계산)

  • 박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.1
    • /
    • pp.60-67
    • /
    • 1986
  • A depth-averaged two dimensional model TIFS was developed from simplified basic flow equations. The model was applied to tidal computations for the Biin Bay area near the Gunsan port. Vertical tides and tidal velocities for the tested was simulated for neap and spring tides. The simulation results were in good agreement with the obserbed data. This paper also attempts to evaluate model sensitivity from different initial conditions, roughness coefficient, time increments, and water depths. Among the selected input parameters, water depth and roughness coefficient were found to significantly affect vertical and horizontal tides.

  • PDF

Hydraulic Characteristics in the Movable Venturi Flume with Circular Cone (원뿔형 벤츄리수로의 수리특성)

  • Kim, Dae Geun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2013
  • This study analyzed the hydraulic characteristics of a venturi flume with a circular cone using a 3-D numerical model which uses RANS(Reynolds-Averaged Navier-Stokes Equation) as the governing equation. The venturi flume with the circular cone efficiently measures the discharge in the low-flow to high-flow range and offers the advantage of accurate discharge measurements in the case of a low flow. With no influence of the tail-water depth, the stage-discharge relationship and the flow behaviors were analyzed to verify the numerical simulation results. Additionally, this study reviewed the effect of the tail-water depth on the flow. The stage-discharge relationship resulting from a numerical simulation in the absence of an effect by the tail-water depth showed a maximum margin of error of 4 % in comparison to the result of a hydraulic experiment. The simulation results reproduced the overall flow behaviors observed in the hydraulic experiment well. The flow starts to become influenced by the tail-water depth when the ratio of the tail-water depth to the total head exceeds approximately 0.7. As the ratio increases, the effect on the flow tends to grow dramatically. As shown in this study, a numerical simulation is effective for identifying the stage-discharge relationship of a venturi flume with various types of venturi bodies, including a venturi flume with a circular cone.

Development of Depth-averaged Mixing Length Turbulence Model and Assessment of Eddy Viscosity (수심평균 혼합거리 난류 모형의 개발 및 와점성계수의 평가)

  • Choi, Seung-Yong;Han, Kun-Yeun;Hwang, Jae-Hong
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.395-409
    • /
    • 2011
  • The objective of this study is to develop an accurate and robust two-dimensional finite element method for turbulence simulation in open channels. The model is based on Streamline Upwind/Petrov-Galerkin finite element method and Boussinesq's eddy viscosity theory. The method developed in the study is depth-averaged mixing length model which assumes anisotropic and local equilibrium state of turbulence. The model calibration and validation were performed by comparing with analytical solutions and observed data. Several numerical simulations were carried out, which examined the performance of the turbulence model for the purpose of sensitivity analysis. The uniform channels that appear horizontal flow and vertical flow were carried out. The model was also applied to the Han river was in for the applicability test. The results were compared with the observed data. The suggested model displayed reasonable flow distribution compare to the observed data in natural river flow. As a result of this study, the two-dimensional finite element model provides a reliable results for flow distribution based on the turbulence simulation in open channels.

Numerical Analysis on the Turbulence Patterns in The Scour Hole at The Downstream of Bed Protection (하상보호공 직하류부 세굴공의 난류양상에 관한 수치해석적 연구)

  • Lee, Jaelyong;Park, Sung Won;Yeom, Seongil;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.20-26
    • /
    • 2019
  • Where hydraulic structures are to be installed over the entire width of a river or stream, usually a bed protection structure is to be installed. However, a local scour occurs in which the river bed downstream of the river protection system is eroded due to the influence of the upstream flow characteristics. This local scour is dominant in the flow and turbulence characteristics at the boundary of the flow direction and in the material of the bed materials, and may gradually become dangerous over time. Therefore, in this study, we compared the turbulence patterns in the local scour hole at the downstream of the river bed protection with the results of the analysis of the mobile bed experiment, and compared with the application of OpenFoam, a three dimensional numerical analysis model. The distribution of depth-averaged relative turbulence intensities along the flow direction was analyzed. In addition to this result, the stabilization of scour hole was compared with the bed shear stress and Shields parameter, and the results were compared by changing the initial turbulent flow conditions. From the results, it was confirmed that the maximum depth of generation of the three-stage was dominantly developed by the magnitude of depth-averaged relative turbulence intensity rather than the mean flow velocity. This result also suggests that design, construction or gate control are needed to control the depth-averaged relative turbulence intensities in order to reduce or prevent the local scour faults that may occur in the downstream part of the bed protection.

A Two-dimensional Turbulence Model for the Thermal Discharge into Crossflow Field (가로흐름 수성으로 방출되는 2차원 온배수 난류모형)

  • Choi, Hung-Sik;Jung, Kyung-Tae;So, Jae-Kwi;Lee, Kil-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.91-98
    • /
    • 1993
  • A two-dimensional turbulence model for the surface discharge of heated water into cross-flow field has been developed. The depth-averaged continuity, momentum and temperature equations, are solved by an efficient finite-difference procedure known as SIMPLE. Turbulent stresses and heat fluxes are determined from a depth-averaged version of the $textsc{k}$-$\varepsilon$ equation. Results of test run clearly demonstrate its effectiveness in handling strong turbulent phenomena in very shallow near-field region.

  • PDF

Study on Ecological Instream Flow Estimation using River2D Model in the Seomjin River (River2D 모델을 이용한 섬진강의 생태유지유량 산정에 관한 연구)

  • Roh, Kyong-Bum;Park, Sung-Chun;Jin, Young-Hoon;Park, Myoung-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.822-829
    • /
    • 2011
  • The purpose of the present study is to estimate the ecological instream flow for conservation and restoration of fish habitat in running water ecosystem which has very important status for stream environment. Estimation of the ecological instream flow in the present study was carried out by application of a two-dimensional depth averaged model of river hydrodynamics, River2D model. It can model fish habitat in natural streams and rivers and assess the quality of physical habitat accoriding to the species preferences for habitat suitability. Zacco platypus and Zacco temmincki were selected as target fish species in the study area of the Seomjin river. The Habitat Suitability Criteria (HSC) developed by Sung et al. (2005) were used for target fish species, life stages and habitat conditions in the study. Weighted usable area (WUA) was computed by the River2D model considering preferences of target fish species for velocity, depth, and channel substrate. The result revealed that the ecological instream flow of $10.0m^3/s$ is needed to maintain the target fish habitat at each life stage in the river.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part I. Model Description (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: I. 모형설명)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2008
  • The surface runoff is one of the important components for the surface water balance. However, most Land Surface Models(LSMs), coupled to climate models at a large scale for the prediction and prevention of disasters caused by climate changes, simplistically estimate surface runoff from the soil water budget. Ignoring the role of surface flow depth on the infiltration rate causes errors in both surface and subsurface flow calculations. Therefore, for the comprehensive terrestrial water and energy cycle predictions in LSMs, a conjunctive surface-subsurface flow model at a large scale is developed by coupling a 1-D diffusion wave model for surface flow with the 3-D Volume Averaged Soil-moisture Transport(VAST) model for subsurface flow. This paper describes the new conjunctive surface-subsurface flow formulation developed for improvement of the prediction of surface runoff and spatial distribution of soil water by topography, along with basic schemes related to the terrestrial hydrologic system in Common Land Model(CLM), one of the state-of-the-art LSMs.