• Title/Summary/Keyword: depth profiles

Search Result 527, Processing Time 0.025 seconds

Analysis of radon depth profile in soil air after a rainfall by using diffusion model

  • Maeng, Seongjin;Han, Seung Yeon;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2013-2017
    • /
    • 2019
  • The radon concentrations in soil air were measured before and after a rainfall. 226Ra concentration, porosity, moisture content and temperature in soil were measured at Kyungpook National University in Daegu. As the results of measurement and analysis, the arithmetic mean of measured 222Rn concentration increased from 12100 ± 500 Bq/㎥ to 16200 ± 600 Bq/㎥ after the rainfall. And the measured 226Ra concentration was 61.4 ± 5.7 Bq/kg and the measured porosity was 0.5 in soil. The estimated values of 226Ra concentration and porosity using diffusion model of 222Rn in soil were 60.3 Bq/kg and 0.509, respectively. The estimated values were similar to the measured values. 222Rn concentration in soil increased with depth and moisture content. The estimations were obtained through fitting based on the diffusion model of 222Rn using the measurement values. The measured depth profiles of 222Rn were similar to the calculated depth profiles of 222Rn in soil. We hope that the results of this study will be useful for environmental radiation analysis.

Effects of Vertical Eddy Viscosity on the Velocity Profile - Cases of Given Vertical Eddy viscosity - (鉛直 過粘性係數가 流速의 鉛直構造에 미치는 影響 - 鉛直 過粘性係數가 주어진 境遇 -)

  • 이종찬;최병호
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.119-131
    • /
    • 1994
  • Vertical structures of wind-driven and tidal currents in a rectangular shaped uniform-depth basin of homogeneous water have been investigated using a mode-splitted, multi-level grid-box, hydrodynamic numerical model. The model was verified using analytical solutions for various vertical eddy viscosity profiles such as: a constant eddy viscosity, a linearly decreasing or increasing variation with depth, a quadratic variation with depth and an exponential variation with depth. Particular attention has been paid on the effects of "near-surface wall layer" on vertical shear of velocity. In numerical calculations, the whole water depth was divided into 13 levels with an unequal grid spacing. the model satisfactorily reproduces the velocity profile, but in case the eddy viscosity decreases rapidly with depth as in quadratical or exponential variation with depth, the vertical gradient of velocity near the bottom became very steep, and analytical solutions and numerical results showed some discrepancy. The vertical structures of horizontal velocity vary with both the depth-averaged value of eddy viscosity and its profiles. the velocity near the sea surface and near the bottom responded sensitively to the eddy viscosity of wall layer. For wind-driven current, the strong velocity shear was generated near the sea surface as eddy viscosity near the surface became small. For tidal current, the velocity above the sea bottom layer was almost constant regardless of the profiles of vertical eddy viscosity, but velocity in the sea bottom layer showed strong shear as eddy viscosity became small.

  • PDF

The Simulation on Dose Distributions of the 6 MeV Electron Beam in Water Phantom (6 MeV 전자선의 물팬텀 속의 선량분포에 관한 모의계산)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok;Moon, Sun-Rock
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.75-79
    • /
    • 2000
  • This study was performed for the clinical applications applying the Monte Carlo methods. In this study we calculated the absorbed dose distributions for the 6 MeV electron beam in water phantom and compared the results with measured values. The energy data of electron beam used in Monte Carlo calculation is the energy distribution for 6 MeV electron beam which is assumed as a Gaussian form. We calculated percent depth doses and beam profiles for three field sizes of $10{\times}10,\;15{\times}15$, and $20{\times}20\;cm^2$ in water phantom using Monte Carlo methods and measured those data using a semiconductor detector and other devices. We found that the calculated percent depth doses and beam profiles agree with the measured values approximately. However, the calculated beam profiles at the edge of the fields were estimated to be lower than the measured values. The reason for that result is that we did not consider the angular distributions of the electrons in phantom surface and contamination of X-rays in our calculations. In conclusion, in order to apply the Monte Carlo methods to the clinical calculations we are to study the source models for electron beam of the linear accelerator beforehand.

  • PDF

Detection Range Estimation Algorithm for Active SONAR System and Application to the Determination of Optimal Search Depth (능동 소나 체계에서의 표적 탐지거리 예측 알고리즘과 최적 탐지깊이 결정에의 응용)

  • 박재은;김재수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.62-70
    • /
    • 1994
  • In order to estimate the detection range of a active SONAR system, the SONAR equation is commonly used. In this paper, an algorithm to calculate detection range in active SONAR system as function of SONAR depth and target depth is presented. For given SONAR parameters and environment, the transmission loss and background level are found, signal excess is computed. Using log-normal distribution, signal excess is converted to detection probability at each range. Then, the detection range is obtained by integrating the detection probability as function of range for each depth. The proposed algorithm have been applied to the case of omni-directional source with center frequency 30Hz for summer and winter sound profiles. It is found that the optimal search depth is the source depth since the detection range increase at source depth where the signal excess is maximized.

  • PDF

Dipole Model to Predict the Rectangular Defect on Ferromagnetic Pipe

  • Suresh, V.;Abudhair, A.
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.437-441
    • /
    • 2016
  • Dipole model based analytical expression is proposed to estimate the length and depth of the rectangular defect on ferromagnetic pipe. Among the three leakage profiles of Magnetic Flux Leakage (MFL), radial and axial leakage profiles are considered in this work. Permeability variation of the specimen is ignored by considering the flux density as close to saturation level of the inspected specimen. Comparing the profile of both the components, radial leakage profile furnishes the better estimation of defect parameter. This is evident from the results of error percentage of length and depth of the defect. Normalized pattern of the proposed analytical model radial leakage profile is good agreement with the experimentally obtained profile support the performance of proposed expression.

Development of Novel Techniques for Determining the Oxygen Tracer Diffusion Coefficients in Oxides II - Measurements of the Depth Profiles of $^{18}O$ Concentration in the solid Samples by Raman Spectroscopy (산화물에서의 산소추적자확산계수를 결정하는 새로운 방법의 개발 II - 라만분광법에 의한 고체시료 중의 시간에 따른 $^{18}O$ 농도변화 측정 -)

  • 김병국;마하구찌히로오;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1459-1466
    • /
    • 1994
  • A novel technique for determining the oxygen tracer diffusion coefficients in oxides was developed. After the 16O-18O solid-gas exchange reactions between 16O in the oxides and 18O in the ambient gas, Raman spectra of the cross sections of oxide samples were measured in a spatial resolution of 5 ${\mu}{\textrm}{m}$. From thus obtained Raman spectra, depth profiles of 18O concentration in the oxide samples were calculated. The oxygen tracer diffusion coefficients and the surface exchange coefficients were determined under the assumptions that samples are semi-infinite slab and that the surface exchange reactionsare not negligible. The oxygen tracer diffusion coefficient of 2.8 mol% Y2O3-containing tetragonal ZrO2 polycrystals, 8 mol% Y2O3-containing ZrO2 polycrystals, and 10 mol% Y2O3-containing cubic ZrO2 single crystals (along the a axis) are as follows.

  • PDF

The simulation on dose distributions of high energy electron beams. (고에너지 전자선의 선량분포에 관한 모의계산)

  • Lee, Jeong-Ok;Kim, Seung-Kon
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.83-88
    • /
    • 2002
  • This work was peformed as a basic research in the application of Monte Carlo methods for planning treatments by electron beams. Depth doses, beam profiles and isodose curves in water phantoms were calculated for monoenergetic electron beams with 6, 9, and 12 MeV. The calculated depth doses and beam profiles are almost consistent with their known values. If allowances are made for distributions in electron beam energies, we are confident that the agreement between our calculations and measured values will significantly improve. In conclusion, our work shows that similar Monte Carlo calculations could be applied for geometries In human body in planning electron beam treatments.

  • PDF

Determination of Layer Thickness of A/B Type Multilayer Films in SIMS Depth Profiling Analysis

  • Hwang, Hyun-Hye;Jang, Jong-Shik;Kang, Hee-Jae;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.231-231
    • /
    • 2012
  • Correct determination of the interface locations is critical for the calibration of the depth scale and measurement of layer thickness in SIMS depth profiling analysis of multilayer films. However, the interface locations are difficult to determine due to the unwanted distortion from the real ones by the several effects due to sputtering with energetic ions. In this study, the layer thicknesses of Si/Ge and Si/Ti multilayer films were measured by SIMS depth profiling analysis using the oxygen and cesium primary ion beam. The interface locations in the multilayer films could be determined by two methods. The interfaces can be determined by the 50 at% definition where the atomic fractions of the constituent layer elements drop or rise to 50 at% at the interfaces. In this method, the raw depth profiles were converted to compositional depth profiles through the two-step conversion process using the alloy reference relative sensitivity factors (AR-RSF) determined by the alloy reference films with well-known compositions determined by Rutherford backscattering spectroscopy (RBS). The interface locations of the Si/Ge and Si/Ti multilayer films were also determined from the intensities of the interfacial composited ions (SiGe+, SiTi+). The determination of the interface locations from the composited ions was found to be difficult to apply due to the small intensity and the unclear variation at the interfaces.

  • PDF

Bedrock Depth Variations and Their Applications to identify Blind Faults in the Pohang area using the Horizontal-to-Vertical Spectral Ratio (HVSR) (포항지역 HVSR에 의한 기반암 심도와 단층 식별 연구)

  • Kang, Su Young;Kim, Kwang-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.188-198
    • /
    • 2022
  • Some deep faults do not reach the ground surface and are seldom recognized. Gokgang Fault area in the east of the Heunghae area of the Pohang basin has been selected to confirm the feasibility of the Horizontal-to-Vertical Spectral Ratio (HVSR) approach to identify blind faults. Densely spaced microtremor data have been acquired along two lines in the study area and processed to obtain resonance frequencies. An empirical relationship between the resonance frequency and the bedrock depth was proposed using borehole data available in the study area. Resonance frequencies along two lines were then converted to bedrock depths. The resulting depth profiles show significant lateral variations in the bedrock depth. As expected, considerable variation in the resonance frequency is observed near the Gokgang fault. The depth profiles also present additional significant variations in the resonance frequencies and the bedrock depths. The feature is presumably related to a blind fault that is previously unknown. Therefore, this case study confirms the feasibility of the HVSR technique to identify faults otherwise not recognized on the surface.