DOI QR코드

DOI QR Code

Bedrock Depth Variations and Their Applications to identify Blind Faults in the Pohang area using the Horizontal-to-Vertical Spectral Ratio (HVSR)

포항지역 HVSR에 의한 기반암 심도와 단층 식별 연구

  • Kang, Su Young (Institute of Geologic Hazard & Industrial Resources, Pusan National University) ;
  • Kim, Kwang-Hee (Department of Geological Science, Pusan National University)
  • 강수영 (부산대학교 지질재해산업자원연구소) ;
  • 김광희 (부산대학교 지질환경과학과)
  • Received : 2022.01.15
  • Accepted : 2022.02.18
  • Published : 2022.02.28

Abstract

Some deep faults do not reach the ground surface and are seldom recognized. Gokgang Fault area in the east of the Heunghae area of the Pohang basin has been selected to confirm the feasibility of the Horizontal-to-Vertical Spectral Ratio (HVSR) approach to identify blind faults. Densely spaced microtremor data have been acquired along two lines in the study area and processed to obtain resonance frequencies. An empirical relationship between the resonance frequency and the bedrock depth was proposed using borehole data available in the study area. Resonance frequencies along two lines were then converted to bedrock depths. The resulting depth profiles show significant lateral variations in the bedrock depth. As expected, considerable variation in the resonance frequency is observed near the Gokgang fault. The depth profiles also present additional significant variations in the resonance frequencies and the bedrock depths. The feature is presumably related to a blind fault that is previously unknown. Therefore, this case study confirms the feasibility of the HVSR technique to identify faults otherwise not recognized on the surface.

지하의 단층들이 지표면까지 도달하지 못하면 단층의 유무를 인지 못하는 경우가 있다. HVSR 분석법으로 지표면 아래 단층의 존재를 판별할 수 있는지 살펴보기 위해 포항분지 흥해지역 동편의 곡강단층을 통과하는 지역을 선정하여 연구를 진행하였다. 교차하는 두개의 측선에서 조밀하게 관측한 배경잡음으로 HVSR 분석을 통해 공명주파수를 산정하였다. 연구지역 내 시추 자료의 기반암 깊이 정보와 시추 지역의 공명주파수를 이용해 상관식을 도출한 후 두측선에서의 공명주파수를 상관식에 적용해 기반암 심도를 산출하였다. HVSR 분석 결과 두 측선에서 기반암 심도가 급격히 변하는 곳이 있다. 특히 곡강단층 인근에서 공명주파수가 급격히 변화하였고, 기존에 알려진 단층이 없는 지역에서도 공명주파수와 기반암 심도가 급격히 변화하는 곳이 있음을 알 수 있었다. 이 형상은 이전에 알려지지 않은 blind fault와 관련이 있을 것으로 사료된다. 본 연구는 지표면에서 인식하지 못하는 단층을 식별하기 위한 HVSR 방법의 적용 가능성을 확인하였다.

Keywords

Acknowledgement

심사과정에서 논문을 읽고 많은 도움을 주신 두분 심사위원과 편집위원께 감사드립니다. 본 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었습니다.

References

  1. Ahn, J.K., Cho, S., Jeon, Y.S. and Lee, D.K., 2018, Response characteristics of site-specific using aftershock event. Journal of the Korean Geotechnical Society, 34. 51-64. (in Korean)
  2. Assatourians, K. and Atkinson, G., 2010. Database of processed time series and response spectra data for Canada: An exmaple application to study of 2005 MN 5.4 Riviere du Loup, Quebec, Earthauke, Seismological Research Letters, 81, 1013-1031. https://doi.org/10.1785/gssrl.81.6.1013
  3. Badrane, S., Bahi, L., Jabour, N. and Brahim, A. I., 2006. Seismic site effect estimation in the city of Rabat (Morocco). Journal of Geophysics and Engineering 3, 207-211 DOI: 10.1088/1742-2132/3/3/001.
  4. Bignardi, S., Mantovani, A. and AbuZeid, N., 2016. OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Computers & Geosciences 93, 103-113 DOI: http://dx.doi.org/10.1016/j.cageo.2016.05.009.
  5. Bottelin, P., Dufrechou, G., Seoane, L., Llubes, M., and Monod, B., 2019. Geophysical methods for mapping Quaternary sediment thickness: Application to the Saint-Lary basin (French Pyrenees), Comptes rendus-Geoscience, 351, 407-419. https://doi.org/10.1016/j.crte.2019.07.001
  6. Castellaro, S. and Mulargia, F., 2009. Vs30 Estimates using constrained H/V measurement. Bulletin of the Seismological Society of America, 99, 761-773. https://doi.org/10.1785/0120080179
  7. Chatelain, J.-L., Guillier, B., Cara, F., Duval, A.-M., Atakan, K., and Bard, P.-Y., The WP02 SESAME team, 2008. Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings, Bull Earthquake Eng, 6, 33-74. https://doi.org/10.1007/s10518-007-9040-7
  8. Chen, Q., Liu, L., Wang, W., and Rohrbach, E., 2009. Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing, Chinese Science Bulletin, 54(2), 280-287.
  9. Du, Y., Xu, P., Ling, S., Tian, B., You, Z., and Zhang, R., 2019. Determining the soil-bedrock interface and fracture-zone scope in the central urban area of the Jinan city, China, by using microtremor signals, Journal of Geophysics and Engineering, 16, 680-689. Doi:10.1093/jge/gxz040.
  10. Field, E.H. and Jacob, K., 1993. The theoretical response of sedimentary layers to ambient seismic noise. Geophysical Research Letters, 20-24, 2925-2928. https://doi.org/10.1029/93GL03054
  11. Geological Society of Korea, 2019. Summary Report of the Korean Government Commission on Relations between the 2017 Pohang Earthquake and EGS Project, p. 127.
  12. Geopsy Group, 2019. Geopsy Package Release 3.2.0, http://www.geopsy.org/ (March 3th 2019).
  13. GIPS, 2019, Geotechnical Information Portal System,https://geoinfo.or.kr/index.do (May 30th 2019)
  14. Haghshenas, E., Bard, P.-Y., Theodulidis, N., and SESAME WP04 Team, 2008. Empirical evaluation of microtremor H/V spectral ratio, Bull Earthquake Eng., 6: 75-108 DOI 10.1007/s10518-007-9058-x.
  15. Hassani, B. and Atkinson, G. M., 2016. Applicability of the Site Fundamental Frequency as a VS30 Proxy for Central and Eastern North America. Bull. Seismol. Soc. Am. 106, 653-664 DOI: https://www.doi.org/10.1785/0120150259.
  16. Hong, M.H. and Kim, K.Y., 2010. H/V Spectral-ratio Analysis of Microtremors in Jeju Island, Jigu-Mulli-wa-Mulli-Tamsa, 13(2), 144-152. (in Korean)
  17. Ibs-von Seht, M. and Wohlenberg, J., 1999. Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89, 250-259. https://doi.org/10.1785/BSSA0890010250
  18. Kagami, H., Okada, S., Shiono, K., Oner, M., Dravinski, M., and Mal, A. K., 1986. Observation of 1- to 5-second microtremors and their application to eartquake engineering. Part III. A two-dimensional study of site effects in the San Fernado Valley, Bulletin of the Seismological Society of America, 76(6), 1801-1812. https://doi.org/10.1785/BSSA0760061801
  19. Kang, S. Y., Kim, K.-H., Chiu, J.-M. and Liu, L., 2020a. Microtremor HVSR analysis of heterogeneous shallow sedimentary structures at Pohang, South Korea. Journal of Geophysics and Engineering DOI: https://doi.org/10.1093/jge/gxaa035.
  20. Kang, S.Y., Kim, K.H., Kim, D.Y., Jeon, B.Y., and Lee, J.W., 2020b. Effects of meterological variations and sensor burial depth on HVSR analysis. Journal of Korean Earth Science Society, 46(6), 658-669. DOI: https://doi.org/10.5467/JKESS.2020.41.6.658
  21. Khalili, M., and Mirzakurdeh, A.V., 2019. Fault detection using microtremor data (HVSR-based approach) and electrical resistivity survey, Journal of Rock Mechanics and Geotechnical Engineering 11(2019) 400-408. https://doi.org/10.1016/j.jrmge.2018.12.003.
  22. KIGAM, 2020, Geological Map of Korea, https://mgeo.kigam.re.kr/ (March 10th 2020)
  23. Kim, J.-K., 2009. Analysis of site amplification of seismic stations using Odesan earthquake, Earthquake Engineering Society of Korea, 13, 27-34. (in Korean) https://doi.org/10.5000/EESK.2009.13.1.027
  24. KMA (Korea Meteorological Administration), 2021. Weather data open portal, https://data.kma.go.kr/cmmn/main.do (October 26th 2021)
  25. Konno, K. and Ohmachi, T., 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of ambient noise. Bull. Seismol. Soc. Am. 88, 228-241. https://doi.org/10.1785/BSSA0880010228
  26. Lee, H., Kim, R. and Kang, T.-S., 2017. Seismic Response from Microtremor of Chogye Basin, Korea. Geophysics and Geophysical Exploration 20, 88-95 DOI: https://doi.org/10.7582/GGE.2017.20.2.088. (in Korean)
  27. Liu, L., Chen, Q., Wang, W. and Rohrbach, E., 2014, Ambient noise as the new source for urban engineering seismology and earthquake engineering: a case study from Beijing metropolitan area, Earthq Sci, 27, 89-100. https://doi.org/10.1007/s11589-013-0052-x
  28. Nakamura, Y., 1989. A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface. Quarterly Report of Railway Technology Research Institute. 30, 25-33.
  29. Nakamura, Y. 2019. What is the Nakamura Method?, Seismological Research letters, 90, 1437-1443.
  30. Ohmachi, T., Nakamura, Y., and Toshinawa, T., 1991. Ground motion characteristics of the San Francisco Bay area detected by microtremor measurements, Proc. of the 2nd International Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, March 1991, 1643-1648.
  31. Parolai, S., Bormann, P., and Milkereit, C., 2002. New relationship between Vs, thickness of sediments, and rsonance frequency calculated by the H/V ratio of seismic noise for the Colongne Area (Germany), Bulletin of the Seismological Society of America, 92, 2521-2527. https://doi.org/10.1785/0120010248
  32. SESAME, 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation, SESAME. Report No. Project No. EVG1-CT-2000-00026 SESAME.
  33. Sohn, Y.K. and Son, M., 2004, Synrift stratigraphic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang basin, SE Korea. Sedimentology, 51, 1387-1408. https://doi.org/10.1111/j.1365-3091.2004.00679.x
  34. Song, C. W., Son, M., Sohn, Y. K., Han, R., Shinn, Y. J. and Kim, J.-C., 2015. A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea. J. Geol. Soc. Korea 51, 53-66 DOI: 10.14770/jgsk.2015.51.1.53.
  35. Sunaryo, 2017. Study of seismic vulnerability index (Kg) from dominant frequency (f0) and amplification factor (A0) by means of microzonation data: Case study on Batubesi dam of Nuha, East Luwu, South Sulawesi, Indonesia, 2017 International Seminar on Sensor, Instrumentation, Measurement and Metrology (ISSIMM), Surabaya, 78-81.
  36. Teves-Costa, P., Matias, L., Oliveira, C.S., and Mendes-Victor, L.A., 1996. Shallow crustal models in the Lisbon area from explosion data using body and surface wave analysis, Tectonophysics, 258, 171-193. https://doi.org/10.1016/0040-1951(95)00194-8
  37. Theodulidis, N.P. and Bard, P.-Y., 1995. Horizontal to vertical spectral ratio and geological conditions: an anlysis of strong motion data from Greece and Taiwan (SMART-1), Soil Dynamics and Earthquake Engineering, 14, 177-197. https://doi.org/10.1016/0267-7261(94)00039-J
  38. Tuncel, A. and Akgun, M., 2016. Obtaining the Ground Seismic Vulnerability Indexes Using Microtremor Method, 2016 International conference on engineering and natural sciences, Saragevo, 24-28 May 2016, 369-373.
  39. Yun, H.S., 1994. Emended Stratigraphy of the Miocene formations in the Pohang Basin, Part II: South of the Hyongsan Fault. Journal of the Paleontological Society of Korea, 10, 99-116.
  40. Yun, W.Y., Park, S.C. and Kim, K.Y., 2013. Comparison of background noise characteristics between surface and borehole station of Hwacheon, Jigu-Mulli-wa-Mulli-Tamsa, 16(4), 203-210. (in Korean)