• 제목/요약/키워드: depth of crack

검색결과 601건 처리시간 0.025초

RESEARCH TRENDS IN THE CELLULOSE REINFORCED FIBROUS CONCRETE IN USA

  • Soroushian, Parviz;Ravanbakhsh, Sizvosh
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.3-23
    • /
    • 1997
  • The growth in fast-track construction and repair has prompted major efforts to develop high-early-strength concrete mix compositions. Such mixtures rely on the use of relatively high cement contents and accelerator dosages to increase the rate of strength development. The measures, however, seem to compromise the long-term performance of concrete in applications such as full-depth patches as evidenced by occasional premature deterioration of such patches. The hypothesis successfully validated in this research was that traditional methods of increasing the early-age strength of concrete, involving the use of high cement and accelerator contents, increase the moisture and thermal movements of concrete. Restraint of such movements in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduced microcracks and thus increase the permeability of concrete. This increase in permeability accelerates various processes of concrete deterioration, including freeze-thaw attack. Fiver reinforcement of concrete is an effective approach to the control of microcrack and crack development under tensile stresses. Fibers, however, have not been known of accelerating the process of strength gain in concrete. The recently developed specialty cellulose fibers, however, were found in this research to be highly effective in increasing the early-age strength of concrete. This provides a unique opportunity to increase the rate of strength gain in concrete without increasing moisture an thermal movements, which actually controlling the processes of microcracking and racking in concrete. Laboratory test results confirmed the desirable resistance of specialty cellulose fiber reinforced High-early-strength concrete to restrained shrinkage microcracking an cracking, and to different processes of deterioration under weathering effects.

  • PDF

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

유산완충액을 이용한 인공치아우식의 형성에 미치는 산의 농도와 pH에 관한 연구 (THE EFFECT OF ACID CONCENTRATION AND pH OF LACTATE BUFFER SOLUTION ON THE PROGRESS OF ARTIFICIAL CARIES LESION IN HUMAN TOOTH ENAMEL)

  • 박성호;이찬영;이정석
    • Restorative Dentistry and Endodontics
    • /
    • 제18권2호
    • /
    • pp.277-290
    • /
    • 1993
  • Dental caries is considered to be caused by demineralization by organic acid produced by microorganism. But the formation of subsurface lesion in initial caries make it diffcult to explain by simple demineralization. This study is carried out on the basis of thermodynamic concept proposed by Margolis and Moreno. The purpose of this study is to evaluate the effects of acid concentration and pH of lactate buffer system on the artificial caries lesion progress. 160 teeth without any crack, defect or opaque enamel were used and coated with nail varnish except the window ($2{\times}3$ mm). Under the constant degree of saturation(D.S.). The teeth were divided into 8 groups according to acid concentration(10mM, 25mM, 50mM, 100mM) and pH(4.3, 5.0, 6.0). Each group was immersed in buffer solution for 3, 6, 9, 18 days under controlled temperature($25^{\circ}C$). After cutting through the window and grinding, the specimens, 100-150 um in thickness, were imbibed in water or air and examined using polarilizing microscope. The depth of the surface and subsurface surface lesion were measured. 1. In the constant pH and D. S. value, the subsurface lesion progresses more rapidly as the concentration of lactic acid increases. (0.01, 0.025, 0.05, 0.1) 2. In the constant acid concentration and DS value, the subsurface lesion progresses more slowly as the pH increases. (4.3, 5.0, 5.5, 6.0) 3. The width of surface lesion seems to be constant independant of pH and acid concentration.

  • PDF

수위변동에 따른 Earth-Rockfill 댐의 거동 및 균열원인에 대한 평가 (An Evaluation of Stress-Strain Behaviour of Earth-Rockfill Dam and Causes of Crack due to Water Table Fluctuation)

  • 김상규;한성길;이민형;안상로
    • 한국지반공학회논문집
    • /
    • 제17권6호
    • /
    • pp.149-162
    • /
    • 2001
  • 삼랑진에 위치한 삼랑진양수발전 상.하부댐의 댐마루에 시공 후 종방향 균열이 발생하였다. 이 댐들은 전력을 생산하기 위한 양수발전댐으로 상부댐과 하부댐으로 구성되어 있으며, 매일 10m이상의 수위변화를 받아왔다. 본 논문은 이들 댐중 상부댐에 발생한 종방향 균열의 원인을 찾는데 있다. 균열의 주요 원인은 수위변동으로 인한 것으로 판단되었으며, 이를 검토하기 위해 hyperbolic model을 이용한 수치해석을 수행하였다. 수치해석을 위한 입력자료를 얻기 위해 심벽재료와 사석재료에 대해 일련의 삼축압축시험을 수행하였다. 또한 수위변동으로 인한 주기적인 응력변화를 검토하기 위한 입력자료를 얻기 위해 진동삼축압축시험을 수행하였다. 수치해석결과 반복하중이 작용했을 경우 댐마루에서 깊이 4m까지 구속압력이 음이 되는 것으로 나타났으며, 이로 인해 종방향균열이 발생한 것으로 판단되었다. 이 종방향균열의 깊이는 댐 마루에서 수행한 시험굴에서 확인하였으며, 현장 조사결과와 잘 부합하였다.

  • PDF

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar

  • Torres, Lluis;Barris, Cristina;Kaklauskas, Gintaris;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.997-1016
    • /
    • 2015
  • The contribution of tensioned concrete between cracks (tension-stiffening) cannot be ignored when analysing deformation of reinforced concrete elements. The tension-stiffening effect is crucial when it comes to adequately estimating the load-deformation response of steel reinforced concrete and the more recently appeared fibre reinforced polymer (FRP) reinforced concrete. This paper presents a unified methodology for numerical modelling of the tension-stiffening effect in steel as well as FRP reinforced flexural members using the concept of equivalent deformation modulus and the smeared crack approach to obtain a modified stress-strain relation of the reinforcement. A closed-form solution for the equivalent secant modulus of deformation of the tensioned reinforcement is proposed for rectangular sections taking the Eurocode 2 curvature prediction technique as the reference. Using equations based on general principles of structural mechanics, the main influencing parameters are obtained. It is found that the ratio between the equivalent stiffness and the initial stiffness basically depends on the product of the modular ratio and reinforcement ratio ($n{\rho}$), the effective-to-total depth ratio (d/h), and the level of loading. The proposed methodology is adequate for numerical modelling of tension-stiffening for different FRP and steel reinforcement, under both service and ultimate conditions. Comparison of the predicted and experimental data obtained by the authors indicates that the proposed methodology is capable to adequately model the tension-stiffening effect in beams reinforced with FRP or steel bars within wide range of loading.

철근 콘크리트 연결보의 하중 전달 기구와 변형 능력 (The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams)

  • 홍성걸;장상기
    • 한국지진공학회논문집
    • /
    • 제10권3호
    • /
    • pp.113-123
    • /
    • 2006
  • 콘크리트 부재의 내진설계에 있어 강도와 더불어 변형 능력은 중요한 요소이다. 연결보는 전단 지배 부재임에도 항복 이후 소성 변형을 요구하는 부재인데 본 연구에서는 연결보의 변형 능력에 대한 실험을 통해 변형 모형을 제시하였다. 일반적인 배근 형태를 가진 철근 콘크리트 연결보를 대상으로 단조하중실험을 수행하였다. 경간-깊이비, 휨 철근비, 전단 철근비를 변수로 하여 연결보의 거동을 평가하였다. 전단 지배 부재인 연결보는 아치작용과 트러스 작용으로 전단력에 대해 저항하는데 실험 결과를 통해 전단력을 두 작용의 구분과 항복 강도 발현 이후 소성 변형에 따른 두 작용의 구성비 변화에 대해 분석하였다. 실험결과에 기초한 전단 철근과 휨 철근의 변형률 분포 모형을 이용하여 휨 철근의 응력 상태를 산정하였다. 휨 철근의 부착-미끄러짐에 의해 결정되는 균열폭을 고려하는 연결보의 변형 모형을 제시하였다. 항복 상태는 휨 철근의 항복 시점으로 정의하였고, 극한 상태는 변형 증가에 따른 스트럿의 압축 강도 저하에 의해 결정되었다. 이 변형 모형은 변위기초설계에 활용될 수 있을 것으로 기대된다.

Experimental study on steel-concrete composite beams with Uplift-restricted and slip-permitted screw-type (URSP-S) connectors

  • Duan, Linli;Chen, Hongbing;Nie, Xin;Han, Sanwei
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.261-278
    • /
    • 2020
  • In steel-concrete composite beams, to improve the cracking resistance of the concrete slab in the hogging moment region, a new type of connector in the interface, named uplift-restricted and slip-permitted screw-type (URSP-S) connector has been proposed. This paper focuses on the behavior of steel-concrete composite beams with URSP-S connectors. A total of three beam specimens including a simply supported beam with URSP-S connectors and two continuous composite beams with different connectors arrangements were designed and tested. More specifically, one continuous composite beam was equipped with URSP-S connectors in negative moment region and traditional shear studs in other regions. For comparison, the other one was designed with only traditional shear studs. The failure modes, crack evolution process, ultimate capacities, strain responses at different locations as well as the interface slip of the three tested specimens were measured and evaluated in-depth. Based on the experimental study, the research findings indicate that the larger slip deformation is allowed while using URSP-S connectors. Meanwhile, the tensile stress reduces and the cracking resistance of the concrete slab improves accordingly. In addition, the overall stiffness and strength of the composite beam become slightly lower than those of the composite beam using traditional shear studs. Moreover, the arrangement suggestion of URSP-S connectors in the composite beam is discussed in this paper for its practical design and application.

공초점레이저주사현미경을 이용한 심미수복재와 상아질의 접착계면에 관한 연구 (A CONFOCAL LASER SCANNING MICROSCOPIC STUDY ON THE INTERFACE BETWEEN TOOTH COLORED RESTORATIVE MATERIALS AND DENTIN)

  • 박병철;조영곤;문주훈
    • Restorative Dentistry and Endodontics
    • /
    • 제25권3호
    • /
    • pp.313-320
    • /
    • 2000
  • The purpose of this study was to evaluate on the interfacial morphology between dentin and restorative materials. In this in vitro study, the cavity wall restorated with 3 different kinds of tooth colored restorative materials [resin-modified Glass Ionomer cement (Fuji II LC), composite resin (Z-100), compomer (Dyract)]. The thirty extracted human molar teeth without caries and/or restorations are used. The experimental teeth were randomly divided into three groups of ten teeth each. In each group, Wedge shaped cavities (width: 3mm, length: 2mm, depth: 1.5mm) were prepared at the cementoenamel junction on buccal and lingual surfaces. The adhesive of composite resin were mixed with rhodamine B. Primer of composite resin, Prime & Bond 2.1 of Dyract and liquid of Fuji II LC were mixed with fluorescein. In group 1, the cavity wall was treatment with dentin conditioner, and then restorated with Fuji II LC. In group 2, the cavity wall was treatment with Prime & Bond 2.1 and then restorated with Dyract. In group 3, the cavity wall was etching with 10% maleic acid, applied with primer and bonding agent and then restorated with Z-100. The interface between dentin and restorative materials was observed by fluoresence imaging with a confocal laser scanning microscope. The results were as follows : 1. In Glass ionomer group, adaptation of resin modified Glass-ionomer restoration against cavity wall is tight, but the crack formed inside of restoration were observed. 2. In Dyract group, the penetration of resin tag is shorter and the width of hybrid layer is narrower than composite resin group. 3. In Z-100 group, primer penetrated deeply through dentinal tubule. Also bonding agent was penetrated along the primer, but the penetration length is shorter than primer part, and in 3-D image, the resin tag is conical shape and lateral branch is observed.

  • PDF

양극산화 후 실링처리된 알루미늄 합금의 해수 내 내식성과 캐비테이션 침식 저항성 평가 (Evaluation of Corrosion and Cavitation Erosion Resistance of Sealed Aluminum Alloy after Anodizing Treatment in Seawater)

  • 박일초;이정형;한민수;김성종
    • 한국표면공학회지
    • /
    • 제51권2호
    • /
    • pp.87-94
    • /
    • 2018
  • Various sealing techniques were applied to the anodized 5083 aluminum alloy for marine environment to reduce corrosion and cavitation erosion damage. Electrochemical experiments and cavitation erosion tests were conducted to evaluate the corrosion resistance and cavitation resistance of the anodic oxide film treated with sealing in natural seawater solution. Then, damaged surface morphology was analyzed by scanning electron microscope(SEM) and 3D microscope. As the results of the electrochemical experiments, it was observed that the surface damage of all the experimental conditions in the anodic polarization experiment was locally grown by the combination of crack and corrosion damage. In the Tafel analysis, the corrosion resistance of all sealing treatment conditions was improved compared to the anodizing. On the other hand, cavitation erosion tests showed that the anodizing and all the sealing treatment conditions generated local pit damage by cavitation erosion attack and grew to crater damage in the observation of damaged surface by SEM. Also, the weight loss and the surface damage depth measured with the experiment time presented that most of the sealing treatment conditions showed better cavitation erosion resistance than the anodizing, and they had an incubation period at the beginning of the experiment.

순환굵은골재 흡수율에 따른 철근콘크리트 보의 구조 성능 평가 (Evaluation of Structural Performance of Reinforced Concrete Beams According to Water Absorption of Recycled Coarse Aggregate)

  • 김상우;한동석;이현아;고만영;김길희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.49-58
    • /
    • 2012
  • 이 연구에서는 순환굵은골재를 사용한 철근콘크리트 보의 휨거동을 평가한다. 이를 위하여 골재의 종류와 흡수율이 서로 다른 3개의 실험체를 제작하였다. 모든 실험체는 4점 가력을 받도록 계획하였으며, 전단의 영향이 크도록 전단경간비를 2.5로 계획하였다. 실험체의 모멘트-곡률 관계를 예측하기 위하여 인장증강효과를 고려한 비선형 휨해석을 수행하였으며, 실험체의 전체 거동을 평가하기 위하여 전단의 영향을 고려할 수 있는 비선형 유한요소해석을 수행하였다. 실험결과, 흡수율 6%의 순환굵은골재를 사용한 실험체의 휨강도와 균열특성은 천연골재를 사용한 실험체와 서로 유사함을 확인할 수 있었다. 그리고 실험결과와 해석결과를 비교한 결과, 기존 해석방법을 이용하여 순환굵은골재를 사용한 철근콘크리트 보의 거동을 타당하게 예측할 수 있음을 확인할 수 있었다.