• Title/Summary/Keyword: depth measurement

Search Result 1,573, Processing Time 0.036 seconds

Precision Analysis of the Depth Measurement System Using a Single Camera with a Rotating Mirror (회전 평면경과 단일 카메라를 이용한 거리측정 시스템의 정밀도 분석)

  • ;;;Chun Shin Lin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.11
    • /
    • pp.626-633
    • /
    • 2003
  • Theoretical analysis of the depth measurement system with the use of a single camera and a rotating mirror has been done. A camera in front of a rotating mirror acquires a sequence of reflected images, from which depth information is extracted. For an object point at a longer distance, the corresponding pixel in the sequence of images moves at a higher speed. Depth measurement based on such pixel movement is investigated. Since the mirror rotates along an axis that is in parallel with the vertical axis of the image plane, the image of an object will only move horizontally. This eases the task of finding corresponding image points. In this paper, the principle of the depth measurement-based on the relation of the pixel movement speed and the depth of objects have been investigated. Also, necessary mathematics to implement the technique is derived and presented. The factors affecting the measurement precision have been studied. Analysis shows that the measurement error increases with the increase of depth. The rotational angle of the mirror between two image-takings also affects the measurement precision. Experimental results using the real camera-mirror setup are reported.

Precision Analysis of a Single Camera-based Depth Measurement System using the Reflected Images of a Rotating Mirror (회전 평면경의 반사 영상을 이용한 단일 카메라 시스템의 거리측정 정밀도 분석)

  • 나상익;손흥락;김형석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2323-2326
    • /
    • 2003
  • Theoretical analysis of the depth measurement system with the use of a single camera and a rotating mirror has hem done. A camera in front of a rotating mirror acquires a sequence of reflected images, from which depth information is extracted. For an object pint at a longer distance, the corresponding pixel in the sequence of images moves at a higher speed. In this paper, the principle d the depth measurement-based on the relation of the pixel movement speed and the depth of objects have been investigated. Also, necessary mathematics to implement the technique is derived and presented. The factors affecting the measurement precision have been studied Analysis shows that the measurement m increases with the increase of depth. The rotational angle of the mirror between two image-takings also affects the measurement precision. Experimental results using the real camera-mirror setup are reported.

  • PDF

Application of In Situ Measurement for Site Remediation and Final Status Survey of Decommissioning KRR Site

  • Hong, Sang Bum;Nam, Jong Soo;Choi, Yong Suk;Seo, Bum Kyoung;Moon, Jei Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2016
  • Background: In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. Materials and Methods: The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (${\beta}$) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. Results and Discussion: The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. Conclusion: In this study, the vertical activity distribution and initial activity of $^{137}Cs$ could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

A Study on the Penetration Depth Measurement Methods of Inorganic Waterproofing Agent for Concrete (콘크리트용 무기계 방수제의 침투깊이 측정방법에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Park, Man-Seok;Kim, Kyung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.116-124
    • /
    • 2014
  • Penetration depth of inorganic waterproofing agent is difficult to assess quantitatively because inorganic waterproofing agent for concrete is not an internal waterproof membrane. However, evaluation of penetration depth of inorganic waterproofing agent is one of the most important evaluation index to secure efficiency in a consistent penetration. Therefore, this paper was proposed penetration depth measurement method of inorganic waterproofing agent for concrete and the penetration depth of the conventional inorganic waterproofing agent have been evaluated through the proposed penetration depth measurement method. As a result of test, the measured penetration depth throught the proposed penetration depth measurement method of inorganic waterproofing agent showed that more than 90% reliability.

3D Depth Measurement System-based Unpaved Trail Recognition for Mobile Robots (이동 로봇을 위한 3차원 거리 측정 장치기반 비포장 도로 인식)

  • Gim Seong-Chan;Kim Jong-Man;Kim Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.395-399
    • /
    • 2006
  • A method to recognize unpaved road region using a 3D depth measurement system is proposed for mobile robots. For autonomous maneuvering of mobile robots, recognition of obstacles or recognition of road region is the essential task. In this paper, the 3D depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Therefore, the problem falls into a texture identification problem. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of unpaved trail are included in this paper.

vehicle Control Algorithm based on Depth Sensor Measurement System (거리센서 계측기반 이동물체의 인식 알고리즘)

  • Kim, Jong-Man;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.6-9
    • /
    • 2008
  • A 3D depth measurement system is proposed for mobile vehicles. Depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to- the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of Non-linear trail are included in this paper.

  • PDF

Calibration of the depth measurement system with a laser pointer, a camera and a plain mirror

  • Kim, Hyong-Suk;Lin, Chun-Shin;Gim, Seong-Chan;Chae, Hee-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1994-1998
    • /
    • 2005
  • Characteristic analysis of the depth measurement system with a laser, a camera and a rotating mirror has been done and the parameter calibration technique for it has been proposed. In the proposed depth measurement system, the laser beam is reflected to the object by the rotating mirror and again the position of the laser beam is observed through the same mirror by the camera. The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD. There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance. The calibration techniques to minimize the effect of such major parameters are proposed.

  • PDF

3D Depth Measurement System based on Parameter Calibration of the Mu1ti-Sensors (실거리 파라미터 교정식 복합센서 기반 3차원 거리측정 시스템)

  • Kim, Jong-Man;Kim, Won-Sop;Hwang, Jong-Sun;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.125-129
    • /
    • 2006
  • The analysis of the depth measurement system with multi-sensors (laser, camera, mirror) has been done and the parameter calibration technique has been proposed. In the proposed depth measurement system, the laser beam is reflected to the object by the rotating mirror and again the position of the laser beam is observed through the same mirror by the camera. The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD. There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance.

  • PDF

A Laser-Applied Hybrid Focus Method for the Measurement of a Surface Morphology with Depth Discontinuity (깊이불연속 형상 측정을 위한 레이저 응용 하이브리드 초점법)

  • Kim, Gyung-Bum;Shin, Young-Su;Moon, Soon-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.111-118
    • /
    • 2006
  • A hybrid focus method with multiple laser slits is newly proposed for the measurement of surface morphology with depth discontinuity, and it is based on the integration of DFB and DFF. Rough depth information is estimated through calibration tables which are constructed by DFD with multiple laser slits, and then DFF is applied to only each specific depth range using the rough depth information resulting from DFD. The proposed hybrid method gives more accurate results than DFD and DFF, and faster measurement than DFF in the vicinity of depth discontinuity Its performance is verified through experiments of calibration blocks with sharp depth discontinuity.

3D Depth Measurement System-based Nonliniar Trail Recognition for Mobile Robots (3 차원 거리 측정 장치 기반 이동로봇용 비선형 도로 인식)

  • Kim, Jong-Man;Kim, Won-Sop;Shin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.517-518
    • /
    • 2007
  • A method to recognize unpaved road region using a 3D depth measurement system is proposed for mobile robots. For autonomous maneuvering of mobile robots, recognition of obstacles or recognition of road region is the essential task. In this paper, the 3D depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Therefore, the problem falls into a texture identification problem. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of Nonlinear trail are included in this paper.

  • PDF