• Title/Summary/Keyword: depth image-based

Search Result 825, Processing Time 0.035 seconds

3D Augmented Reality Streaming System Based on a Lamina Display

  • Baek, Hogil;Park, Jinwoo;Kim, Youngrok;Park, Sungwoong;Choi, Hee-Jin;Min, Sung-Wook
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • We propose a three-dimensional (3D) streaming system based on a lamina display that can convey field information in real-time by creating floating 3D images that can satisfy the accommodation cue. The proposed system is mainly composed of three parts, namely: a 3D vision camera unit to obtain and provide RGB and depth data in real-time, a 3D image engine unit to realize the 3D volume with a fast response time by using the RGB and depth data, and an optical floating unit to bring the implemented 3D image out of the system and consequently increase the sense of presence. Furthermore, we devise the streaming method required for implementing augmented reality (AR) images by using a multilayered image, and the proposed method for implementing AR 3D video in real-time non-face-to-face communication has been experimentally verified.

Design and Implementation of Depth Image Based Real-Time Human Detection

  • Lee, SangJun;Nguyen, Duc Dung;Jeon, Jae Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.212-226
    • /
    • 2014
  • This paper presents the design and implementation of a pipelined architecture and a method for real-time human detection using depth image from a Time-of-Flight (ToF) camera. In the proposed method, we use Euclidean Distance Transform (EDT) in order to extract human body location, and we then use the 1D, 2D scanning window in order to extract human joint location. The EDT-based human extraction method is robust against noise. In addition, the 1D, 2D scanning window helps extracting human joint locations easily from a distance image. The proposed method is designed using Verilog HDL (Hardware Description Language) as the dedicated hardware architecture based on pipeline architecture. We implement the dedicated hardware architecture on a Xilinx Virtex6 LX750 Field Programmable Gate Arrays (FPGA). The FPGA implementation can run 80 MHz of maximum operating frequency and show over 60fps of processing performance in the QVGA ($320{\times}240$) resolution depth image.

Enhancement on Time-of-Flight Camera Images (Time-of-Flight 카메라 영상 보정)

  • Kim, Sung-Hee;Kim, Myoung-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.708-711
    • /
    • 2008
  • Time-of-flight(ToF) cameras deliver intensity data as well as range information of the objects of the scene. However, systematic problems during the acquisition lead to distorted values in both distance and amplitude. In this paper we propose a method to acquire reliable distance information over the entire scene correcting each information based on the other data. The amplitude image is enhanced based on the depth values and this leads depth correction especially for far pixels.

  • PDF

3D Box Reconstruction Using Depth-Point (깊이좌표를 이용한 3차원 육면체 재구성)

  • Shin, Sung-Sik;Song, Ju-Whan;Gwun, Ou-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.739-740
    • /
    • 2008
  • Method for 3D reconstruction from image points and geometric clues can be roughly classified as "model-based" and "constraint-based". We present a new method to reconstruct from one image a scene using depth-point. The our method is benchmarked synthetic data and its effectiveness is shown on photograph data.

  • PDF

Fast Extraction of Objects of Interest from Images with Low Depth of Field

  • Kim, Chang-Ick;Park, Jung-Woo;Lee, Jae-Ho;Hwang, Jenq-Neng
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.353-362
    • /
    • 2007
  • In this paper, we propose a novel unsupervised video object extraction algorithm for individual images or image sequences with low depth of field (DOF). Low DOF is a popular photographic technique which enables the representation of the photographer's intention by giving a clear focus only on an object of interest (OOI). We first describe a fast and efficient scheme for extracting OOIs from individual low-DOF images and then extend it to deal with image sequences with low DOF in the next part. The basic algorithm unfolds into three modules. In the first module, a higher-order statistics map, which represents the spatial distribution of the high-frequency components, is obtained from an input low-DOF image. The second module locates the block-based OOI for further processing. Using the block-based OOI, the final OOI is obtained with pixel-level accuracy. We also present an algorithm to extend the extraction scheme to image sequences with low DOF. The proposed system does not require any user assistance to determine the initial OOI. This is possible due to the use of low-DOF images. The experimental results indicate that the proposed algorithm can serve as an effective tool for applications, such as 2D to 3D and photo-realistic video scene generation.

  • PDF

A Study of Generating Depth map for 3D Space Structure Recovery

  • Ban, Kyeong-Jin;Kim, Jong-Chan;Kim, Eung-Kon;Kim, Chee-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1855-1862
    • /
    • 2010
  • In virtual reality, there are increasing qualitative development in service technologies for realtime interaction system development, 3- dimensional contents, 3D TV and augment reality services. These services experience difficulties to generate depth value that is essential to recover 3D space to form solidity on existing contents. Hence, research for the generation of effective depth-map using 2D is necessary. This thesis will describe a shortcoming of an existing depth-map generation for the recovery of 3D space using 2D image and will propose an enhanced depth-map generation algorithm that complements a shortcoming of existing algorithms and utilizes the definition of depth direction based on the vanishing point within image.

Parallax Map Preprocessing Algorithm for Performance Improvement of Hole-Filling (홀 채우기의 성능 개선을 위한 시차지도의 전처리 알고리즘)

  • Kim, Jun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.62-70
    • /
    • 2013
  • DIBR(Depth Image Based Rendering) is a kind of view synthesis algorithm to generate images at free view points from the reference color image and its depth map. One of the main challenges of DIBR is the occurrence of holes that correspond to uncovered backgrounds at the synthesized view. In order to cover holes efficiently, two main approaches have been actively investigated. One is to develop preprocessing algorithms for depth maps or parallax maps to reduce the size of possible holes, and the other is to develop hole filling methods to fill the generated holes using adjacent pixels in non-hole areas. Most conventional preprocessing algorithms for reducing the size of holes are based on the smoothing process of depth map. Filtering of depth map, however, attenuates the resolution of depth map and generates geometric distortions. In this paper, we proposes a novel preprocessing algorithm for parallax map to improve the performance of hole-filling by avoiding the drawbacks of conventional methods.

Non-Homogeneous Haze Synthesis for Hazy Image Depth Estimation Using Deep Learning (불균일 안개 영상 합성을 이용한 딥러닝 기반 안개 영상 깊이 추정)

  • Choi, Yeongcheol;Paik, Jeehyun;Ju, Gwangjin;Lee, Donggun;Hwang, Gyeongha;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.45-54
    • /
    • 2022
  • Image depth estimation is a technology that is the basis of various image analysis. As analysis methods using deep learning models emerge, studies using deep learning in image depth estimation are being actively conducted. Currently, most deep learning-based depth estimation models are being trained with clean and ideal images. However, due to the lack of data on adverse conditions such as haze or fog, the depth estimation may not work well in such an environment. It is hard to sufficiently secure an image in these environments, and in particular, obtaining non-homogeneous haze data is a very difficult problem. In order to solve this problem, in this study, we propose a method of synthesizing non-homogeneous haze images and a learning method for a monocular depth estimation deep learning model using this method. Considering that haze mainly occurs outdoors, datasets mainly containing outdoor images are constructed. Experiment results show that the model with the proposed method is good at estimating depth in both synthesized and real haze data.

3D Shape Recovery from Image Focus using Gaussian Process Regression (가우시안 프로세스 회귀분석을 이용한 영상초점으로부터의 3차원 형상 재구성)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • The accuracy of Shape From Focus (SFF) technique depends on the quality of the focus measurements which are computed through a focus measure operator. In this paper, we introduce a new approach to estimate 3D shape of an object based on Gaussian process regression. First, initial depth is estimated by applying a conventional focus measure on image sequence and maximizing it in the optical direction. In second step, input feature vectors consisting of eginvalues are computed from 3D neighborhood around the initial depth. Finally, by utilizing these features, a latent function is developed through Gaussian process regression to estimate accurate depth. The proposed approach takes advantages of the multivariate statistical features and covariance function. The proposed method is tested by using image sequences of various objects. Experimental results demonstrate the efficacy of the proposed scheme.