We propose a triangulation method based on stereo vision angles. We setup stereo vision systems which extract the depth information to a moving object by detecting a moving object using difference image method and obtaining the depth information by the triangulation method based on stereo vision angles. The feature point of a moving object is used the geometrical center of the moving object, and the proposed vision system has the accuracy of 0.2mm in the range of 400mm.
본 논문에서는 Time-of-Flight (TOF) 원리를 이용하여 획득한 저해상도 깊이 영상을 고해상도의 색상 영상에 정합하는 방법을 소개한다. 거리 정보 기반의 3차원 렌더링에서 깊이 영상은 렌더링 결과에 큰 영향을 끼치지만, 기존의 스테레오 정합은 색상 영상의 특성에 따라 성능이 크게 변하고, 깊이 정보를 획득하지 못하는 영역이 존재한다. 반면에 TOF 카메라는 적외선 센서를 통해 카메라로부터 물체까지의 거리를 직접 측정하여 영상으로 출력하기 때문에, 장면의 깊이 정보를 실시간으로 획득 할 수 있고 높은 정확도를 가지는 장점이 있다. 하지만 출력 영상의 해상도가 너무 작아 3차원 응용에 직접 이용하기가 어렵다. 또한, 색상 영상과 다른 카메라를 이용하기 때문에 두 영상의 3차원적 위치와 특성이 서로 다르다는 문제점을 갖는다. 따라서 해상도를 증가시키고 다른 두 카메라로 부터 찍힌 영상을 정합시키는 방법이 필요하다. 본 논문에서 제안하는 방법은 깊이 카메라에서 획득한 저해상도 깊이 정보를 고해상도 색상 정보를 이용하여 두 영상간의 정합이 이루어지도록 한다. 향상된 깊이 영상을 사용하여 3차원으로 복원한 실험을 통해, 제안하는 방법이 효과적으로 장면의 변위 정보를 생성함을 알 수 있다.
본 논문에서는 한 장의 정지 영상에서 학습을 통한 방법으로 깊이 정보를 추정하는데 사용되어지는 특징 정보를 PCA(Principal Component Analaysis)기반으로 축소하여 깊이 정보의 정확성을 향상시키는 방법에 대하여 기술한다. 정지 영상에서 깊이 정보를 추정하기 위하여 이미지의 에너지 값과 기울기와 같은 특징을 추출하며 특징들의 관계를 이용하여 각 영역의 깊이 정보를 추정한다. 이 때 영상 필터를 사용하여 많은 특징을 추출하지만 특징의 중요성을 판단하지 않고 모두 사용하면 오히려 성능에 좋지 않은 영향을 미친다. 본 논문에서는 한 장의 정지 영상의 깊이 추정을 위해 PCA를 기반으로 중요도를 판단하여 특징 벡터의 차원을 줄이고 깊이를 정확하게 추정할 수 있는 방법에 대하여 제안한다. 제안한 방법을 스탠포드 대학의 평가 데이터로 실험한 결과, 깊이를 추정하는데 있어서 전체 특징 벡터의 30%만을 이용하여 평균 0.4%에서 최대 2.5%의 정확도가 향상되었다.
This paper proposes an image feature-based real-time RGB-D (Red-Green-Blue Depth) 3D SLAM (Simultaneous Localization and Mapping) system. RGB-D data from Kinect style sensors contain a 2D image and per-pixel depth information. 6-DOF (Degree-of-Freedom) visual odometry is obtained through the 3D-RANSAC (RANdom SAmple Consensus) algorithm with 2D image features and depth data. For speed up extraction of features, parallel computation is performed with GPU acceleration. After a feature manager detects a loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and builds a 3D point cloud based map.
An image processing method was applied to characterize a shape of the flexible grinding disk. A disk surface image was taken by CCD camera. Depth of cut was changed to be 2 and 4mm. Circles marked on the disk were captured to extract the key features of the deflection. Notable correlation has been observed between the intervals and the process conditions. Same methodology has been applied to check the symmetry of the human face. Tentative results revealed that symmetry could be checked using the filtered face image.
본 논문에서는 HTML5에서 직선의 기울기를 이용하여 2D 이미지를 3D 입체 이미지로 변환하는 방법을 제안한다. 3D 이미지 변환을 위한 어떠한 정보도 없이 단 하나의 원본 이미지를 좌안과 우안을 위해 RGB 색상을 필터링한다. 사용자는 깊이 값을 설정하기 위해 미리 만들어 놓은 제어 점을 선택한 후 깊이 값을 설정하는 작업을 수행한다. 이렇게 선택된 값들을 반영하여, 이미지 전체와 부분적인 원근감을 갖도록 사용자가 정의한 직선의 기울기를 이용하여 좌안과 우안을 위한 깊이를 부여한 후 Anaglyph 3D 이미지를 자동으로 생성하게 된다. 이 모든 과정이 HTML5를 사용한 웹 환경에서 구현하였기 때문에, 사용자들은 매우 쉽고 편리하게 자신들이 원하는 3D 이미지를 생성할 수 있게 된다.
In this paper, we propose a new scheme to generate multi-view images using a depth-image-based rendering (DIBR) technique. In order to improve the quality of multi-view images at newly exposed areas during mesh-based rendering, we preprocess the depth map using a Gaussian smoothing filter. Previous algorithms apply a smoothing filter to the whole depth map even if the depth map is collapsed. After extracting objects from the depth map, we apply the smoothing filter to their boundaries. Finally, we cannot only maintain the depth quality, but also generate high quality multi-view images. Experimental results show that our proposed algorithm outperforms previous works and supports an efficient depth keying technique.
본 연구는 차원 높은 영상콘텐츠 제작 과정 중 깊이감의 표현을 위해 적용될 수 있는 기술들과, 그 기술들의 구체적인 내용 및 이에 대한 검증에 관한 것이다. 깊이감을 표현하는 기술에는 조명을 이용하는 방법, 피사계심도 자체를 이용하는 방법과 렌즈를 이용하는 방법, 그리고 카메라의 움직임 즉 줌과 돌리를 이용하는 방법 등이 있다. 이와 같은 방법들이 실제로 적용될 수 있는지 확인하기 위해 선호 빈도를 조사해 본 결과, 기술이 적용된 사진들이 대부분 선택되었다. 깊이감을 표현하는 방법 가운데 렌즈를 이용하는 방법이 가장 편의성 높은 방법이라는 점을 확인할 수 있었다.
본 논문에서는 generative adversarial network (GAN)을 이용한 비감독 학습을 통해 깊이 카메라로 깊이 영상을 취득할 때 발생한 손실된 부분을 복원하는 기법을 제안한다. 제안하는 기법은 3D morphable model convolutional neural network (3DMM CNN)와 large-scale CelebFaces Attribute (CelebA) 데이터 셋 그리고 FaceWarehouse 데이터 셋을 이용하여 학습용 얼굴 깊이 영상을 생성하고 deep convolutional GAN (DCGAN)의 생성자(generator)와 Wasserstein distance를 손실함수로 적용한 구별자(discriminator)를 미니맥스 게임기법을 통해 학습시킨다. 이후 학습된 생성자와 손실 부분을 복원해주기 위한 새로운 손실함수를 이용하여 또 다른 학습을 통해 최종적으로 깊이 카메라로 취득된 얼굴 깊이 영상의 손실 부분을 복원한다.
This paper presents new hole-filling methods for generating multiview images by using depth image based rendering (DIBR). Holes appear in a depth image captured from 3D sensors and in the multiview images rendered by DIBR. The holes are often found around the background regions of the images because the background is prone to occlusions by the foreground objects. Background-oriented priority and gradient-oriented priority are also introduced to find the order of hole-filling after the DIBR process. In addition, to obtain a sample to fill the hole region, we propose the fusing of depth and color information to obtain a weighted sum of two patches for the depth (or rendered depth) images and a new distance measure to find the best-matched patch for the rendered color images. The conventional method produces jagged edges and a blurry phenomenon in the final results, whereas the proposed method can minimize them, which is quite important for high fidelity in stereo imaging. The experimental results show that, by reducing these errors, the proposed methods can significantly improve the hole-filling quality in the multiview images generated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.