• Title/Summary/Keyword: depth image

Search Result 1,834, Processing Time 0.028 seconds

FPGA Implementation of Differential CORDIC-based high-speed phase calculator for 3D Depth Image Extraction (3차원 Depth Image 추출용 Differential CORDIC 기반 고속 위상 연산기의 FPGA 구현)

  • Koo, Jung-youn;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.350-353
    • /
    • 2013
  • In this paper, a hardware implementation of phase calculator for extracting 3D depth image from TOF(Time-Of-Flight) sensor is proposed. The designed phase calculator, which adopts redundant binary number systems and a pipelined architecture to improve throughput and speed, performs arctangent operation using vectoring mode of DCORDIC algorithm. Fixed-point MATLAB simulations are carried out to determine the optimized bit-widths and number of iteration. The designed phase calculator is verified by emulating the restoration of virtual 3D data using MATLAB/Simulink and FPGA-in-the-loop verification, and the estimated performance is about 7.5 Gbps at 469 MHz clock frequency.

  • PDF

Data Encryption Technique for Depth-map Contents Security in DWT domain (깊이정보 콘텐츠 보안을 위한 이산 웨이블릿 변환 영역에서의 암호화 기술)

  • Choi, Hyun-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1245-1252
    • /
    • 2013
  • As the usage of digital image contents increase, a security problem for the payed image data or the ones requiring confidentiality is raised. This paper propose a depth-map image contents encryption methodology to hide the depth information. This method is performed on the frequency coefficients in the Wavelet domain. This method, by selecting the level and threshold value for the wavelet transform, encryption at various strengths are possible. The experimental results showed that encrypting only 0.048% of the entire data was enough to hide the constants of the depth-map. The encryption algorithm expected to be used effectively on the researches on encryption and others for image processing.

Synthesis of Multi-View Images Based on a Convergence Camera Model

  • Choi, Hyun-Jun
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.197-200
    • /
    • 2011
  • In this paper, we propose a multi-view stereoscopic image synthesis algorithm for 3DTV system using depth information with an RGB texture from a depth camera. The proposed algorithm synthesizes multi-view images which a virtual convergence camera model could generate. Experimental results showed that the performance of the proposed algorithm is better than those of conventional methods.

A Technique of Image Depth Detection Using Motion Estimation and Object Tracking (모션 추정과 객체 추적을 이용한 이미지 깊이 검출기법)

  • Joh, Beom-Seok;Kim, Young-Ro
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.15-19
    • /
    • 2008
  • In this paper, we propose a new algorithm of image depth detection using motion estimation and object tracking. In industry, robots are used for automobile, conveyer system, etc. But, these have much necessary time. Thus, in this paper, we develop the efficient method of image depth detection based on motion estimation and object tracking.

Implementing a Depth Map Generation Algorithm by Convolutional Neural Network (깊이맵 생성 알고리즘의 합성곱 신경망 구현)

  • Lee, Seungsoo;Kim, Hong Jin;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • Depth map has been utilized in a varity of fields. Recently research on generating depth map by artificial neural network (ANN) has gained much interest. This paper validates the feasibility of implementing the ready-made depth map generation by convolutional neural network (CNN). First, for a given image, a depth map is generated by the weighted average of a saliency map as well as a motion history image. Then CNN network is trained by test images and depth maps. The objective and subjective experiments are performed on the CNN and showed that the CNN can replace the ready-made depth generation method.

Depth Evaluation from Pattern Projection Optimized for Automated Electronics Assembling Robots

  • Park, Jong-Rul;Cho, Jun Dong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.195-204
    • /
    • 2014
  • This paper presents the depth evaluation for object detection by automated assembling robots. Pattern distortion analysis from a structured light system identifies an object with the greatest depth from its background. An automated assembling robot should prior select and pick an object with the greatest depth to reduce the physical harm during the picking action of the robot arm. Object detection is then combined with a depth evaluation to provide contour, showing the edges of an object with the greatest depth. The contour provides shape information to an automated assembling robot, which equips the laser based proxy sensor, for picking up and placing an object in the intended place. The depth evaluation process using structured light for an automated electronics assembling robot is accelerated for an image frame to be used for computation using the simplest experimental set, which consists of a single camera and projector. The experiments for the depth evaluation process required 31 ms to 32 ms, which were optimized for the robot vision system that equips a 30-frames-per-second camera.

Depth Map Estimation Model Using 3D Feature Volume (3차원 특징볼륨을 이용한 깊이영상 생성 모델)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.447-454
    • /
    • 2018
  • This paper proposes a depth image generation algorithm of stereo images using a deep learning model composed of a CNN (convolutional neural network). The proposed algorithm consists of a feature extraction unit which extracts the main features of each parallax image and a depth learning unit which learns the parallax information using extracted features. First, the feature extraction unit extracts a feature map for each parallax image through the Xception module and the ASPP(Atrous spatial pyramid pooling) module, which are composed of 2D CNN layers. Then, the feature map for each parallax is accumulated in 3D form according to the time difference and the depth image is estimated after passing through the depth learning unit for learning the depth estimation weight through 3D CNN. The proposed algorithm estimates the depth of object region more accurately than other algorithms.

Non-Homogeneous Haze Synthesis for Hazy Image Depth Estimation Using Deep Learning (불균일 안개 영상 합성을 이용한 딥러닝 기반 안개 영상 깊이 추정)

  • Choi, Yeongcheol;Paik, Jeehyun;Ju, Gwangjin;Lee, Donggun;Hwang, Gyeongha;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.45-54
    • /
    • 2022
  • Image depth estimation is a technology that is the basis of various image analysis. As analysis methods using deep learning models emerge, studies using deep learning in image depth estimation are being actively conducted. Currently, most deep learning-based depth estimation models are being trained with clean and ideal images. However, due to the lack of data on adverse conditions such as haze or fog, the depth estimation may not work well in such an environment. It is hard to sufficiently secure an image in these environments, and in particular, obtaining non-homogeneous haze data is a very difficult problem. In order to solve this problem, in this study, we propose a method of synthesizing non-homogeneous haze images and a learning method for a monocular depth estimation deep learning model using this method. Considering that haze mainly occurs outdoors, datasets mainly containing outdoor images are constructed. Experiment results show that the model with the proposed method is good at estimating depth in both synthesized and real haze data.

Improvement of Depth Video Coding by Plane Modeling (평면 모델링을 통한 깊이 영상 부호화의 개선)

  • Lee, Dong-Seok;Kwon, Soon-Kak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.5
    • /
    • pp.11-17
    • /
    • 2016
  • In this paper, we propose a method of correcting depth image by the plane modeling and then improving the coding performance. We model a plane by using the least squares method to the horizontal and vertical directions including the target pixel, and then determine that the predicted plane is suitable from the estimate error. After that, we correct the target pixel by the plane mode. The proposed method can correct not only the depth image composed the plane but also the complex depth image. From the simulation result that measures the entropy power, which can estimate the coding performance, we can see that the coding performance by the proposed method is improved up to 80.2%.

Recent Technologies for the Acquisition and Processing of 3D Images Based on Deep Learning (딥러닝기반 입체 영상의 획득 및 처리 기술 동향)

  • Yoon, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.112-122
    • /
    • 2020
  • In 3D computer graphics, a depth map is an image that provides information related to the distance from the viewpoint to the subject's surface. Stereo sensors, depth cameras, and imaging systems using an active illumination system and a time-resolved detector can perform accurate depth measurements with their own light sources. The 3D image information obtained through the depth map is useful in 3D modeling, autonomous vehicle navigation, object recognition and remote gesture detection, resolution-enhanced medical images, aviation and defense technology, and robotics. In addition, the depth map information is important data used for extracting and restoring multi-view images, and extracting phase information required for digital hologram synthesis. This study is oriented toward a recent research trend in deep learning-based 3D data analysis methods and depth map information extraction technology using a convolutional neural network. Further, the study focuses on 3D image processing technology related to digital hologram and multi-view image extraction/reconstruction, which are becoming more popular as the computing power of hardware rapidly increases.