• Title/Summary/Keyword: depth detection

Search Result 728, Processing Time 0.026 seconds

Analysis on the detection ability of acoustic telemetry receiver for fish detection by installation depth (설치수심에 따른 어류탐지용 음향 텔레메트리 수신기의 탐지성능분석)

  • Hwang, Bo-Kyu;Shin, Hyeon-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.1
    • /
    • pp.83-88
    • /
    • 2010
  • Acoustic telemetry is a useful method to investigate fish behavior and is widely used to obtain biological information. In this study, the detection ability of a mooring-type acoustic telemetry system and the seasonal changes were studied for survey design and data analysis. The system detection range was examined with an underwater noise model, and seasonal changes were estimated with a ray-tracing program and underwater temperature profile data. The field experiment was conducted with two sets of pingers and six receivers to estimate the difference in detection rate by installation depth and to compare the model estimate. Results indicated that the long-range detection ability of the acoustic telemetry system was significantly affected by underwater temperature. The detection rate rapidly decreased near the sea surface or bottom despite that the near-range Signal to noise ratio was sufficient.

Fast Hand Pose Estimation with Keypoint Detection and Annoy Tree (Keypoint Detection과 Annoy Tree를 사용한 2D Hand Pose Estimation)

  • Lee, Hui-Jae;Kang Min-Hye
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.277-278
    • /
    • 2021
  • 최근 손동작 인식에 대한 연구들이 활발하다. 하지만 대부분 Depth 정보를 포함한3D 정보를 필요로 한다. 이는 기존 연구들이 Depth 카메라 없이는 동작하지 않는다는 한계점이 있다는 것을 의미한다. 본 프로젝트는 Depth 카메라를 사용하지 않고 2D 이미지에서 Hand Keypoint Detection을 통해 손동작 인식을 하는 방법론을 제안한다. 학습 데이터 셋으로 Facebook에서 제공하는 InterHand2.6M 데이터셋[1]을 사용한다. 제안 방법은 크게 두 단계로 진행된다. 첫째로, Object Detection으로 Hand Detection을 수행한다. 데이터 셋이 어두운 배경에서 촬영되어 실 사용 환경에서 Detection 성능이 나오지 않는 점을 해결하기 위한 이미지 합성 Augmentation 기법을 제안한다. 둘째로, Keypoint Detection으로 21개의 Hand Keypoint들을 얻는다. 실험을 통해 유의미한 벡터들을 생성한 뒤 Annoy (Approximate nearest neighbors Oh Yeah) Tree를 생성한다. 생성된 Annoy Tree들로 후처리 작업을 거친 뒤 최종 Pose Estimation을 완료한다. Annoy Tree를 사용한 Pose Estimation에서는 NN(Neural Network)을 사용한 것보다 빠르며 동등한 성능을 냈다.

  • PDF

Drowsiness Detection Method during Driving by using Infrared and Depth Pictures

  • You, Gang-chon;Park, Do-hyun;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.189-194
    • /
    • 2018
  • In this paper, we propose the drowsiness detection method for car driver. This paper determines whether or not the driver's eyes are closed using the depth and infrared videos. The proposed method has the advantage to detect drowsiness without being affected by illumination. The proposed method detects a face in the depth picture by using the fact that the nose is closest to the camera. The driver's eyes are detected by using the extraction of harr-like feature within the detected face region. This method considers to be drowsiness if eyes are closed for a certain period of time. Simulation results show the drowsiness detection performance for the proposed method.

Object-aware Depth Estimation for Developing Collision Avoidance System (객체 영역에 특화된 뎁스 추정 기반의 충돌방지 기술개발)

  • Gyutae Hwang;Jimin Song;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.91-99
    • /
    • 2024
  • Collision avoidance system is important to improve the robustness and functional safety of autonomous vehicles. This paper proposes an object-level distance estimation method to develop a collision avoidance system, and it is applied to golfcarts utilized in country club environments. To improve the detection accuracy, we continually trained an object detection model based on pseudo labels generated by a pre-trained detector. Moreover, we propose object-aware depth estimation (OADE) method which trains a depth model focusing on object regions. In the OADE algorithm, we generated dense depth information for object regions by utilizing detection results and sparse LiDAR points, and it is referred to as object-aware LiDAR projection (OALP). By using the OALP maps, a depth estimation model was trained by backpropagating more gradients of the loss on object regions. Experiments were conducted on our custom dataset, which was collected for the travel distance of 22 km on 54 holes in three country clubs under various weather conditions. The precision and recall rate were respectively improved from 70.5% and 49.1% to 95.3% and 92.1% after the continual learning with pseudo labels. Moreover, the OADE algorithm reduces the absolute relative error from 4.76% to 4.27% for estimating distances to obstacles.

Detection Range of Passive Sonar System in Range-Dependent Ocean Environment (거리의존 해양환경에서 수동소나체계의 표적탐지거리예측)

  • Kim, Tae-Hak;Kim, Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.29-34
    • /
    • 1997
  • The prediction of detection range of a passive sonar system is essential to estimate the performance and to optimize the operation of a developed sonar system. In this paper, a model for the prediction of detection range in a range-dependent ocean environment based on the sonar equation is developed and tested. The prediction model calculates the transmission loss using PE propagation model, signal excess, and the detection probability at each target depth and range. The detection probability is integrated to give the estimated detection range. In order to validate the developed model, two cases are considered. One is the case when target depth is known. The other is the case when the target depth is unknown. The computational results agree well with the previously published results for the range-independent environment. Also,the developed model is applied to the range-dependent ocean environment where the warm eddy exists. The computational results are shown and discussed. The developed model can be used to find the optimal frequency of detection, as well as the optimal search depth for the given range-dependent ocean environment.

  • PDF

Robust Vehicle Occupant Detection based on RGB-Depth-Thermal Camera (다양한 환경에서 강건한 RGB-Depth-Thermal 카메라 기반의 차량 탑승자 점유 검출)

  • Song, Changho;Kim, Seung-Hun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Recently, the safety in vehicle also has become a hot topic as self-driving car is developed. In passive safety systems such as airbags and seat belts, the system is being changed into an active system that actively grasps the status and behavior of the passengers including the driver to mitigate the risk. Furthermore, it is expected that it will be possible to provide customized services such as seat deformation, air conditioning operation and D.W.D (Distraction While Driving) warning suitable for the passenger by using occupant information. In this paper, we propose robust vehicle occupant detection algorithm based on RGB-Depth-Thermal camera for obtaining the passengers information. The RGB-Depth-Thermal camera sensor system was configured to be robust against various environment. Also, one of the deep learning algorithms, OpenPose, was used for occupant detection. This algorithm is advantageous not only for RGB image but also for thermal image even using existing learned model. The algorithm will be supplemented to acquire high level information such as passenger attitude detection and face recognition mentioned in the introduction and provide customized active convenience service.

A Technique of Image Depth Detection Using Motion Estimation and Object Tracking (모션 추정과 객체 추적을 이용한 이미지 깊이 검출기법)

  • Joh, Beom-Seok;Kim, Young-Ro
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.15-19
    • /
    • 2008
  • In this paper, we propose a new algorithm of image depth detection using motion estimation and object tracking. In industry, robots are used for automobile, conveyer system, etc. But, these have much necessary time. Thus, in this paper, we develop the efficient method of image depth detection based on motion estimation and object tracking.

Three-dimensional Head Tracking Using Adaptive Local Binary Pattern in Depth Images

  • Kim, Joongrock;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.131-139
    • /
    • 2016
  • Recognition of human motions has become a main area of computer vision due to its potential human-computer interface (HCI) and surveillance. Among those existing recognition techniques for human motions, head detection and tracking is basis for all human motion recognitions. Various approaches have been tried to detect and trace the position of human head in two-dimensional (2D) images precisely. However, it is still a challenging problem because the human appearance is too changeable by pose, and images are affected by illumination change. To enhance the performance of head detection and tracking, the real-time three-dimensional (3D) data acquisition sensors such as time-of-flight and Kinect depth sensor are recently used. In this paper, we propose an effective feature extraction method, called adaptive local binary pattern (ALBP), for depth image based applications. Contrasting to well-known conventional local binary pattern (LBP), the proposed ALBP cannot only extract shape information without texture in depth images, but also is invariant distance change in range images. We apply the proposed ALBP for head detection and tracking in depth images to show its effectiveness and its usefulness.

Plane Detection Method Using 3-D Characteristics at Depth Pixel Unit (깊이 화소 단위의 3차원 특성을 통한 평면 검출 방법)

  • Lee, Dong-Seok;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.580-587
    • /
    • 2019
  • In this paper, a plane detection method using depth information is proposed. 3-D characteristics of a pixel are defined as a direction and length of a normal vector whose is calculated from a plane consisting of a local region centered on the pixel. Image coordinates of each pixel are transformed to 3-D coordinates in order to obtain the local planes. Regions of each plane are detected by calculating similarity of the 3-D characteristics. The similarity of the characteristics consists of direction and distance similarities of normal vectors. If the similarity of the characteristics between two adjacent pixels is enough high, the two pixels are regarded as consisting of same plane. Simulation results show that the proposed method using the depth picture is more accurate for detecting plane areas than the conventional method.

Depth-hybrid speeded-up robust features (DH-SURF) for real-time RGB-D SLAM

  • Lee, Donghwa;Kim, Hyungjin;Jung, Sungwook;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • This paper presents a novel feature detection algorithm called depth-hybrid speeded-up robust features (DH-SURF) augmented by depth information in the speeded-up robust features (SURF) algorithm. In the keypoint detection part of classical SURF, the standard deviation of the Gaussian kernel is varied for its scale-invariance property, resulting in increased computational complexity. We propose a keypoint detection method with less variation of the standard deviation by using depth data from a red-green-blue depth (RGB-D) sensor. Our approach maintains a scale-invariance property while reducing computation time. An RGB-D simultaneous localization and mapping (SLAM) system uses a feature extraction method and depth data concurrently; thus, the system is well-suited for showing the performance of the DH-SURF method. DH-SURF was implemented on a central processing unit (CPU) and a graphics processing unit (GPU), respectively, and was validated through the real-time RGB-D SLAM.