• Title/Summary/Keyword: depressurization

Search Result 114, Processing Time 0.024 seconds

FLUENT Code Analyses for Design Optimization of an Average Bi-directional Flow Tube (평균 양방향 튜브의 설계 최적화를 위한 FLUENT 코드해석)

  • Kang, Kyong-Ho;Yun, Byong-Jo;Euh, Dong-Jin;Baek, Won-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.14-19
    • /
    • 2005
  • Average Bi-directional flow tube was suggested to measure single and two phase flow rate. Its working principle is similar with Pilot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of Pilot tube when it is used in the depressurization condition. 3-dimensional steady state flow analyses using FLUENT 5.4 code were performed to validate the application of the average bi-directional flow tube in case of water and air flow. In this study, sensitivity studies have been performed to optimize the design features of the average bi-directional flow tube which can be applied for the various experimental conditions. For Re numbers above 1000, the k values are nearly constant regardless of the Re numbers and flow types and calculation results and experimental data coincides quite well. The current FLUENT calculation results suggest that linearity of the k values in various design features of the average BDFT is highly promising, which means that it is quite reasonable to select the typical design of the average BDFT for the convenience of the experimental conditions.

Development of an Average Bi-directional Flow Tube for the Measurement of Single and Two phase Flow Rate (단상 및 이상유동 유량 계측을 위한 평균 양방향 유동 튜브 개발)

  • Yun, Byong-Jo;Kang, Kyong-Ho;Euh, Dong-Jin;Baek, Won-Pil
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.172-179
    • /
    • 2004
  • Average Bi-directional flow tube was suggested to measure single and two phase flow rate. Its working principle is similar with Pilot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of Pilot tube when it is used in the depressurization condition. The suggested instrumentation was tested in the air-water vertical test section which has 80mm inner diameter and 10m length. The flow tube was installed at 120 of L/D from inlet of test section. From the test, single air and water flow rate was measured successfully. For the emasurement of two phase flow rate, Chexal drift-flux correlation was used. In the test a new correlation of momentum exchange factor was suggested. The test result shows that the suggested instrumentation using the measured void fraction and Chexal drift-flux correlation can predict the mass flow rates within $10\%$ error of measured data.

  • PDF

FLUENT Code Analyses for Design Optimization of an Average Bi-directional Flow Tube (평균 양방향 튜브의 설계 최적화를 위한 FLUENT코드해석)

  • Kang, Kyong-Ho;Yun, Byong-Jin;Euh, Dong-Jin;Baek, Won-Pil
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.180-186
    • /
    • 2004
  • Average Bi-directional flow tube was suggested to measure single and two phase flow rate. Its working principle is similar with Pilot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of Pilot tube when it is used in the depressurization condition. 3-dimensional steady state flow analyses using FLUENT 5.4 code were performed to validate the application of the averagebi-directional flow tube in case of water and air flow In this study, sensitivity studies have been performed to optimize the design features of the average hi-directional flow tube which can be applied for the various experimental conditions. For Re numbers above 1000, the k values are nearly constant regardless of the Re numbers and flow types and calculation results and experimental data coincides quite well. The current FLUENT calculation results suggest that linearity of the k values in various design features of the average BDFT is highly promising, which means that it is quite reasonable to select the typical design of the average BDFT for the convenience of the experimental conditions.

  • PDF

Changes in the porosity of bulk graphite according to the viscosity of resin for impregnation

  • Lee, Sang-Min;Kang, Dong-Su;Kim, Hye-Sung;Roh, Jea-Seung
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.132-134
    • /
    • 2015
  • When manufacturing bulk graphite, pores develop within the bulk during the carbonization process due to the volatile components of the fillers and the binders. As a result, the physical properties of bulk graphite are inferior to the theoretical values. Impregnants are impregnated into the pores generated in the carbonization process through pressurization and/or depressurization. The physical properties of bulk graphite that has undergone impregnation and re-carbonization processes are outstanding. In the present study, a green body was manufactured by molding with natural graphite flakes and phenolic resin at 45 MPa. Bulk graphite was manufactured by carbonizing the green body at 700 and it was subsequently impregnated with impregnants having viscosity of 25.0 cP, 10.3 cP, and 5.1 cP, and the samples were re-carbonized at $700^{\circ}C$. The above process was repeated three times. The open porosity of bulk graphite after the final process was 22.25%, 19.86%, and 18.58% in the cases of using the impregnant with viscosity of 25.0 cP, 10.3 cP, and 5.1 cP, respectively.

RELAP5 Simulation of the Small Inlet Header Break Test B8604 Conducted in the RD-14 Test Facility

  • Lee, Sukho;Kim, Manwoong
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.57-66
    • /
    • 2000
  • The RELAP5 code has been developed for best-estimate simulation of transients and accidents for pressurized water reactors and their associated systems, but it has not been fully assessed for those of CANDU reactors. However, a previous study suggested that the RELAP5 code could be applicable to simulate the transients and accidents for CANDU reactors. Nevertheless, it is indicated that there are some works to be resolved, such as modeling of headers and multi-channel simulation for the reactor core, etc. Therefore, this study has been initiated with an aim to identify the code applicability for all the postulated transients and accidents in CANDU reactors. In the present study, the small inlet header break experiment (B8604) in the RD-14 test facility was simulated with RELAP5/MOD3.2 code. The RELAP5 results were also compared with both experimental data and those of CATHENA analyses performed by AECL and the analyses demonstrated the code's capability to predict major . phenomena occurring in the transient with sufficient accuracy for both Qualitative and quantitative viewpoint However, some discrepancies in the depressurization of the primary heat transport system after the break and the consequent time delay of the major phenomena were also observed.

  • PDF

Loss of Coolant Accident Analysis During Shutdown Operation of YGN Units 3/4

  • Bang, Young-Seok;Kim, Kap;Seul, Kwang-Won;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.17-28
    • /
    • 1999
  • A thermal-hydraulic analysis is conducted on the loss-of-coolant-accident (LOCA) during shutdown operation of YGN Units 3/4. Based on the review of plant-specific characteristics of YGN Units 3/4 in design and operation, a set of analysis cases is determined, and predicted by the RELAP5/MOD3.2 code during LOCA in the hot-standby mode. The evaluated thermal-hydraulic phenomena are blowdown, break flow, inventory distribution, natural circulation, and core thermal response. The difference in thermal-hydraulic behavior of LOCA at shutolown condition from that of LOCA at full power is identified as depressurization rate, the delay in peak natural circulation timing and the loop seal clearing (LSC) timing. In addition, the effect of high pressure safety injection (HPSI) on plant response is also evaluated. The break spectrum analysis shows that the critical break size can be between 1% to 2% of cold leg area, and that the available operator action time for the Sl actuation and the margin in the peak clad temperature (PCT) could be reduced when considering uncertainties of the present RELAP5 calculation.

  • PDF

STUDY ON HEAT TRANSFER CHARACTERISTICS OF THE ONE SIDE-HEATED VERTICAL CHANNEL WITH INSERTED POROUS MATERIALS APPLIED AS A VESSEL COOLING SYSTEM

  • KURIYAMA, SHINJI;TAKEDA, TETSUAKI;FUNATANI, SHUMPEI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.534-545
    • /
    • 2015
  • In the very high temperature reactor (VHTR), which is a next generation nuclear reactor system, ceramics are used as a fuel coating material and graphite is used as a core structural material. Even if a depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change only slowly. This is because the thermal capacity of the core is so high. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel. The objectives of this study are to investigate the heat transfer characteristics of natural convection of a one-side heated vertical channel with inserted porous materials of high porosity and also to develop the passive cooling system for the VHTR. An experiment was carried out using a one-side heated vertical rectangular channel. To obtain the heat transfer and fluid flow characteristics of the vertical channel with inserted porous material, we have also carried out a numerical analysis using a commercial Computational Fluid Dynamics (CFD) code. This paper describes the thermal performances of the one-side heated vertical rectangular channel with an inserted copper wire of high porosity.

SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

  • Song, Jin Ho;Kim, Tae Woon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accident management measures at the Fukushima Daiich nuclear power plants seem to be not fully effective, limitations of current severe accident management strategy are discussed to identify the areas for the potential improvements including core cooling strategy, containment venting, hydrogen control, depressurization of primary system, and proper indication of event progression. The gap between the Fukushima accident event progression and current understanding of severe accident phenomenology including the core damage, reactor vessel failure, containment failure, and hydrogen explosion are discussed. Adequacy of current safety goals are also discussed in view of the socio-economic impact of the Fukushima accident. As a conclusion, it is suggested that an investigation on a coherent integrated safety principle for the severe accident and development of innovative mitigation features is necessary for robust and resilient nuclear power system.

An Evaluation of Airtightness Performance and Analysis of Energy Savings Potential in Apartment Housing (공동주택의 기밀성능 평가 및 에너지 절감효과 분석)

  • Leigh, Seung-Bok
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.119-125
    • /
    • 1995
  • Since the using of heating energy associated with infiltration is significant in a building, the efforts to minimize the infiltration while ensuring minimum ventilation rates for various types of occupancy will be beneficial. In constrast to that many efforts have been made to reduce heat loss by improving thermal resistance of building envelope, little has been tried to reduce heat loss from infiltration. For achieving such an objective, measurement of air leakage rate will be pre-requisite as a diagnostic tool. A blower door system, a depressurization/pressurization method, was employed and it demonstrated a good potential for measuring airtightness performance of residential buildings. Based on the test results, annual energy savings for residential heating was estimated by reducing infiltration to a level of reasonably airtight or to a level of ASHRAE Standard 62-1989 for minimum ventilation.

  • PDF

Study on the Establishment of Large Building Airtightness Measurement Standards (대규모 건물의 기밀성능 측정기준 수립에 관한 연구)

  • Lee, Dong-Seok;Ji, Kyung-Hwan;Jo, Jae-Hun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.117-124
    • /
    • 2014
  • Airtightness standards using fan pressurization method are normally used for measuring small buildings, detached houses, and apartment units. And, it is easy to conduct airtightness measurement through this fan pressurization method. However, it can be difficult to achieve accurate measurement results for the large buildings as the height and volume of the buildings have been increased. In this paper, we studied the principle of airtightness method by fan pressurization. And, we reviewed the measurement process described in ISO 9972, EN 13829, ASTM E779, ATTMA TS 1, CAN/CGSB 149.15, and JIS A 2201. Then, we categorized the methods' items according by air flow rate (Q) and pressure difference(${\Delta}P$). As a result, we made a comparison analysis on the measurement methods appeared in each standards. And, we achieved 5 test conditions about air flow rate and pressure difference to state requirements for large buildings airtightness measurement.