• 제목/요약/키워드: deposited layer

검색결과 2,397건 처리시간 0.029초

고에너지 전자빔 투사방법으로 제조된 Zr계 비정질 합금 표면복합재료의 탄도충격 성능 (Ballistic Properties of Zr-based Amorphous Alloy Surface Composites Fabricated by High-Energy Electron-Beam Irradiation)

  • 도정현;전창우;남덕현;김충년;송영범;이성학
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1047-1055
    • /
    • 2010
  • The objective of this study is to investigate the ballistic properties of Zr-based amorphous alloy surface composites fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous powders and $LiF+MgF_2$ flux powders was deposited on a pure Ti substrate, and then an electron beam irradiated this powder mixture to fabricate a one-layer surface composite. A four-layer surface composite, in which the composite layer thickness was larger than 3 mm, was also fabricated by irradiating the deposited powder mixture by an electron beam three times on the one-layer surface composite. The microstructural analysis results indicated that a small amount of fine crystalline particles were homogeneously distributed in the amorphous matrix of the surface composite layer. According to the ballistic impact test results, the surface composite layers effectively blocked a fast traveling projectile, while many cracks were formed at the composite layers, and thus the surface composite plates were not perforated. The surface composite layer containing ductile ${\beta}$ dendritic phases showed a better ballistic performance than the one without dendrites because dendritic phases hindered the propagation of shear bands or cracks.

RF-마그네트론 스퍼터링으로 증착된 산화주석 전자수송층의 광학적 및 전기적 특성에 대한 증착 전력의 영향 (Effect of Sputtering Power on Optical and Electrical Properties of SnOx Electron Transport Layer Deposited by RF-magnetron Sputtering)

  • 황지성;이원규;황재근;이상원;현지연;이솔희;정석현;강윤묵;김동환;이해석
    • Current Photovoltaic Research
    • /
    • 제9권1호
    • /
    • pp.1-5
    • /
    • 2021
  • The properties of the electron transport layer (ETL) have a great effect on perovskite solar cell performance. Depositing conformal SnO2 ETL on bottom textured silicon cells is essential to increase current density in terms of the silicon-perovskite tandem solar cells. In the recent study, the SnO2 electron transport layer deposited by the sputtering method showed an efficiency of 19.8%. Also, an electron transport layer with a sputtered TiO2 electron transport layer in a 4-terminal tandem solar cell has been reported. In this study, we synthesized SnOx ETL with a various sputtering power range of 30-60W by Radio-frequency (RF)-magnetron sputtering. The properties of SnOx thin film were characterized using ellipsometer, UV-vis spectrometer, and IV measurement. With a sputtering power of 50W, the solar cell showed the highest efficiency of 13.3%, because of the highest fill factor by the conductivity of SnOx film.

초전도 선재용 완충층의 결정성장 연구 (Epitaxial growth of buffer layers for superconducting coated conductors)

  • 정국채;유재무;김영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권3호
    • /
    • pp.5-8
    • /
    • 2007
  • All three buffer layers of $Y_2O_3$, YSZ, and $CeO_2$ have been deposited on the biaxially textured metal substrates using rf-sputtering method, The first 50-70nm thick $Y_2O_3$ films were grown epitaxially on biaxially textured metal substrates as a seed layer and followed by the diffusion barrier ${\sim}100nm$ thick YSZ and subsequent capping layer ${\sim}200nm$ thick $CeO_2$ deposited epitaxially on top of $Y_2O_3$ seed layer. The epitaxial orientation of all three layers were all (100) grown with rocking curve Full Width at Half Maximum(FWHM) of $4-5^{\circ}$ and in plane phi-scan FWHM of $6-8^{\circ}$ using X -ray diffraction analysis. The NiO phases formed during the $Y_2O_3$ seed layer deposition seem to degrade the crystallinity and roughen the surface morphology of the following layer observed by AFM(Atomic Force Microscopy). The buffered tapes were used as substrates for long length YBCO coated conductors with high critical current density $J_c$. The five multi-turn of metal tapes was employed to increase the thickness of films and production rate to compensate the low growth rate of rf-sputtering method.

Schottky Barrier Free Contacts in Graphene/MoS2 Field-Effect-Transistor

  • Qiu, Dongri;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.209.2-209.2
    • /
    • 2015
  • Two dimensional layered materials, such as transition metal dichalcogenides (TMDs) family have been attracted significant attention due to novel physical and chemical properties. Among them, molybdenum disulfide ($MoS_2$) has novel physical phenomena such as absence of dangling bonds, lack of inversion symmetry, valley degrees of freedom. Previous studies have shown that the interface of metal/$MoS_2$ contacts significantly affects device performance due to presence of a scalable Schottky barrier height at their interface, resulting voltage drops and restricting carrier injection. In this study, we report a new device structure by using few-layer graphene as the bottom interconnections, in order to offer Schottky barrier free contact to bi-layer $MoS_2$. The fabrication of process start with mechanically exfoliates bulk graphite that served as the source/drain electrodes. The semiconducting $MoS_2$ flake was deposited onto a $SiO_2$ (280 nm-thick)/Si substrate in which graphene electrodes were pre-deposited. To evaluate the barrier height of contact, we employed thermionic-emission theory to describe our experimental findings. We demonstrate that, the Schottky barrier height dramatically decreases from 300 to 0 meV as function of gate voltages, and further becomes negative values. Our findings suggested that, few-layer graphene could be able to realize ohmic contact and to provide new opportunities in ohmic formations.

  • PDF

$Si_3N_4$ 페시베이션 박막이 유기발광다이오드 소자에 주는 영향 연구 (The Study of Silicon Nitride Passivation Layer on OLED)

  • 박일흥;김관도;신훈규;윤재경;윤원민;권오관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.332-333
    • /
    • 2009
  • In this paper, we have deposited silicon nitride films by plasma-enhanced chemical vapor deposition (PECVD). For films deposited under optimized conditions, the mechanism of plasma-enhanced vapor deposition of silicon nitride is studied by varying process parameters such as rf power, gas ratio, and chamber pressure. It was demonstrated that organic light-emitting diode(OLEDs) were fabricated with the inorganic passivation layer processing. We have been studied the inorganic film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation layer, we have carried out the fabrication of OLEDs and investigate with luminescence and MOCON.

  • PDF

YBCO coated conductor with a single buffer layer of Yttrium Oxide

  • Park, Chan;Dongqi Shi;Kyujeong Song;Rokkil Ko;Park, Soojeong;Yoo, Sang-Im
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권3호
    • /
    • pp.20-22
    • /
    • 2003
  • Y$_2$O$_3$ films were pulsed laser deposited on cube textured Ni and Ni-W substrates to be used as a single buffer layer of YBCO coated conductor. Initial deposition of $Y_2$O$_3$ films was performed in a reducing atmosphere, and subsequent deposition was done in the base pressure of the chamber and oxygen atmosphere. The $Y_2$O$_3$ films have a strong cube texture (The full width at half maximum of the ø-scan of $Y_2$O$_3$ was 8.4 which was the same as that of metal substrate) and smooth crack-free microstructure. The biaxially textured YBCO films (The full width at half maximum of the ø-scan was 10.2) pulsed laser deposited on the $Y_2$O$_3$/metal exhibited Tc(R=0) of 86.5K and Jc of 0.7 MA/cm2 at 77K in self field, representing that the $Y_2$O$_3$ single buffer layer is an efficient diffusion barrier of Ni and thus very promising for the achievement of high-Jc YBCO coated conductor.

ICBD 법에 의한 $ Y_2O_3$박막특성에 관한 연구 (Properties of $ Y_2O_3$ Thin Films Prepared by ICBD Method)

  • 전정식;문종;이상인;심태언;황정남
    • 한국진공학회지
    • /
    • 제5권3호
    • /
    • pp.245-250
    • /
    • 1996
  • $Y_2O_3$ thin film on si(100) was successfully grown by ionized cluster beam(ICBD) technique at substrate temperature of around $500^{\circ}C$ and pressure of ~$10^{-5}$Torr.To prevent the oxidation of Si substrae, a very thin yttrium layer was deposited on Si before reactive depositing of oxygen and yttrium source. In asdeposited stage, b.c.c and h.c.p strucutres of $Y_2O_3$ were observed from S-ary analysis. From the observation of spots and ring patterns in selected area diffractin(SAD) patterns. crystallane formation and growth could be proceeded during the deposition. $Y_2O_3$/mixed layer/$SiO_2=170\AA/50\AA/10\AA$ structure were verified by high resolution transmition electron imcroscopy(HRTEM) image, and the formation of amorphous layer of SiO2 was discussed . Electricla charateristics of the film were also investigated . In as-deposited Pt/$Y_2O_3$/Si sturcuture, leakage current was less than $10^{-6}$A/$\textrm{cm}^2$ at 7MV/cm strength.

  • PDF

Stress Dependence of Thermal Stability of Nickel Silicide for Nano MOSFETs

  • Zhang, Ying-Ying;Lim, Sung-Kyu;Lee, Won-Jae;Zhong, Zhun;Li, Shi-Guang;Jung, Soon-Yen;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.15-16
    • /
    • 2006
  • The thermal stability of nickel silicide with compressively and tensilely stressed nitride capping layer has been investigated in this study. The Ni (10 nm) and Ni/Co/TiN (7/3/25 nm) structures were deposited on the p-type Si substrate. The stressed capping layer was deposited using plasma enhanced chemical vapor deposition (PECVD) after silicide formation by one-step rapid thermal process (RTP) at $500^{\circ}C$ for 30 sec. It was found that the thermal stability of nickel silicide depends on the stress induced by the nitride capping layer. In the case of Ni (10 nm) structure, the high compressive sample shows the best thermal stability, whereas in the case of Ni/Co/TiN (7/3/25 nm) structure, the high compressive sample shows the worst thermal stability.

  • PDF

다층 구조로부터 열 확산에 의한 $PbTiO_3$ 박막의 제조 (Formation of $PbTiO_3$ Thin Films by Thermal Diffusion from Multilayrs)

  • 서도원;최덕균
    • 한국세라믹학회지
    • /
    • 제30권6호
    • /
    • pp.510-516
    • /
    • 1993
  • $PbTiO_3$ thin films have been formed by rapid thermal annealing(RTA) of $TiO_2$/Pb/$TiO_2$ multilayer films deposited on Si wafers by RF sputtering. Based on the optimal depositon conditions of TiO2 and Pb, $TiO_2$/Pb/$TiO_2$ three layers were deposited for 900$\AA$ each. These films were subjected to RTA process at the temperatures ranging from $400^{\circ}C$ to $900^{\circ}C$ for 30 seconds in air, and were analyzed by X-ray diffraction and transmission electron microscopy to investigate the phases and the microstructures. As a result, perovskite $PbTiO_3$ phases was obtained above $500^{\circ}C$ with the trace of unreacted $TiO_2$. RBS analysis revealed the anisotropic behavior of diffusion that the diffusivity of Pb to the bottom $TiO_2$ layer was faster than that of Pb to the top $TiO_2$ layer. The amorphous Pb-silicate was formed between film and Si substrate due to the diffusion of Pb, but Pb-silicate existed locally at the interface and the amount of that phase was very small. Therefore the effect of bottom $TiO_2$ layer as a diffusion barrier was confirmed. $PbTiO_3$ films formed by current technique showed a relative dielectric constant of 60, and the maximum breakdown field reached 170kV/cm.

  • PDF

Thin composite film passivation through RF sputtering method For Large-sized Organic Display Devices

  • Lee, Joo-Won;Kim, Young-Min;Park, Jung-Soo;Bea, Sung-Jin;Kim, Na-Rae;Kim, Jai-Kyeong;Jang, Jin;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1480-1483
    • /
    • 2005
  • Transparent thin composite films (TCFs) were deposited on OLED devices by means of RF sputtering method and their passivation-properties were evaluated by comparing to the e-beam evaporating method. This composite film formed by mixed ratio of MgO (3wt %): $SiO_2$ (1wt %) was developed from pallet as a source of e-beam evaporator to 6-inch size target for sputtering in order to apply for large-sized organic display devices. Water Vapor Transmission Rates (WVTR) of the deposited films were measured as a function of thickness to assess the effectiveness of this film as a passivation layer and it applied to real devices. From this study, we can confirm that the passivation layer formed by TCFs using RF sputtering method sufficiently shows the potentiality of application to passivation layer for organic display devices.

  • PDF