• Title/Summary/Keyword: dental metal alloys

Search Result 119, Processing Time 0.024 seconds

Electrochemical Characteristics of Osteoblast Cultured Ti-Ta Alloy for Dental Implant (골아세포가 배양된 치과 임플란트용 Ti-Ta합금의 전기화학적 특성)

  • Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.69-75
    • /
    • 2008
  • Electrochemical behaviors of surface modified and MC3T3-E1 cell cultured Ti-30Ta alloys have been investigated using various electrochemical methods. The Ti alloys containing Ta were melted by using a vacuum furnace and then homogenized for 6 hrs at $1000^{\circ}C$. MC3T3-E1 cell culture was performed with MC3T3-E1 mouse osteoblasts for 2 days. The microstructures and corrosion resistance were measured using FE-SEM, XRD, EIS and potentiodynamic test in artificial saliva solution at $36.5{\pm}1^{\circ}C$. Ti-Ta alloy showed the martensite structure of ${\alpha}+{\beta}$ phase and micro-structure was changed from lamellar structure to needle-like structure as Ta content increased. Corrosion resistance increased as Ta content increased. Corrosion resistance of cell cultured Ti-Ta alloy increased predominantly in compared with non cell cultured Ti- Ta alloy due to inhibition of the dissolution of metal ion by covered cell. $R_p$ value of MC3T3-E1 cell cultured Ti-40 Ta alloy showed $1.60{\times}10^6{\Omega}cm^2$ which was higher than those of other Ti alloy. Polarization resistance of cell-cultured Ti-Ta alloy increased in compared with non-cell cultured Ti alloy.

A STUDY ON THE GALVANIC CORROSION OF TITANIUM USING THE IMMERSION AND ELECTROCHEMICAL METHOD (침적법과 전기화학법을 이용한 티타늄의 갈바닉 부식에 관한 연구)

  • Kay, Kee-Sung;Chung, Chae-Heon;Kang, Dong-Wan;Kim, Byeong-Ok;Hwang, Ho-Gil;Ko, Yeong-Mu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.584-609
    • /
    • 1995
  • The purpose of this study was to evaluate the difference of the galvanic corrosion behaviour of the titanium in contact with gold alloy, silva-palladium alloy, and nickel-chromium alloy using the immersion and electrochemical method. And the effects of galvallit couples between titanium and the dental alloys were assessed for their usefulness as materials for superstructure. The immersion method was performed by measuring the amount of metal elementsreleased by Inductivey coupled plasma emission spectroscopy(ICPES) The specimen of fifteen titanium plates, the five gold alloy, five silver-palladium, five nickel-chromium plates, and twenty acrylic resin plates ware fabricated, and also the specimen of sixty titanium plugs, the thirty gold alloy, thirty silver-palladium, and nickelc-hromium plugs were made. Thereafter, each plug of gold alloy, silver-palladium, and nickel-chromium inserted into the the titanium and acrylic resin plate, and also titanium plug inserted into the acrylic resin plate. The combination specimens uf galvanic couples immersed in 70m1 artificial saliva solution, and also specimens of four type alloy(that is, titanium, gold, silver-palladium and nickel-chromium alloy) plugs were immersed solely in 70m1 artificial sativa solution. The amount of metal elements released was observed during 21 weeks in the interval of each seven week. The electrochemical method was performed using computer-controlled potentiosta(Autostat 251. Sycopel Sicentific Ltd., U.K). The wax patterns(diameter 11.0mm, thickness,in 1.5mm) of four dental casting alloys were casted by centrifugal method and embedded in self-curing acrylic resin to be about $1.0cm^2$ of exposed surface area. Embedded specimens were polished with silicone carbide paper to #2,000, and ultrasonically cleaned. The working electrode is the specimen of four dental casting alloys, the reference electrode is a saturated calmel electrode(SCE) and the ounter electrode is made of platinum plate. In the artificial saliva solution, the potential scanning was carried out starting from-700mV(SCE) TO +1,000mV(SCE) and the scan rate was 75mV/min. Each polarization curve of alloy was recorded automatically on a logrithmic graphic paper by XY recorder. From the polarization curves of each galvanic couple, corrosion potential and corrosion rates, that is, corrosion density were compared and order of corrosion tendency was determined. From the experiments, the following results were obtained : 1. In the case of immersing titanium, gold alloy, silver-palladium alloy, and nickel-chromium alloysolely in the artificial saliva solution(group 1, 2, 3, and 4), the total amount of metal elements released was that group 4 was greater about 2, 3 times than group 3, and about 7.8 times than group 2. In the case of group 1, the amount of titanium released was not found after 8 week(p<0.001). 2. In the case of galvanic couples of titanium in contact with alloy(group 5, 6), the total amount of metal elements released of group 5 and 6 was less than that of group 7, 8, 9, and 10(p<0.05). 3. In the case of galvanic couples of titanium in contact with silver-palladium alloy(group 7, 8), the total amount of metal elements released of group 7 was greater about twice than that of group 5, and that of group 8 was about 14 times than that of group 6(p<0.05). 4. In the case of galvanic couples of titanium in contact with nickel-chromium alloy(group 9, 10), the total amount of metal elements released of group 9 and 10 was greater about 1.8-3.2 times than that of group 7 and 8, and was greater about 4.3~25 times than that of group 5 and 6(p<0.05). 5. In the effect of galvanic corrosion according to the difference of the area ratio of cathode and anode, the total amount of metal elements released was that group 5 was greater about 4 times than group 6, group 8 was greater about twice than group 7, and group 10 was greater about 1.5 times than group 9(p<0.05). 6. In the effect of galvanic corrosion according to the elasped time during 21 week in the interval of each 7 week, the amount of metal elements released was decreased markedly in the case of galvanic couples of the titanium in contact with gold alloy and silver-palladium alloy but the total amount of nickel and beryllium released was not decreased markedly in the case of galvanic couples of the titanium in contact with nickel-chromium alloy(p<0.05). 7. In the case of galvanic couples of titanium in contact with gold alloy, galvanic current was lower than any other galvanic couple. 8. In the case of galvanic couples of titanium in contact with nickel-chromium alloy, galvanic current was highest among other galvanic couples.

  • PDF

EFFECTS OF SURFACE ROUGHNESS AND MULTILAYER COATING ON THE CORROSION RESISTANCE OF Ti-6Al-4V ALLOY

  • Ko, Yeong-Mu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.134-135
    • /
    • 2003
  • The dental implant materials required good mechanical properties, such as fatigue strength, combined with a high resistance to corrosion. For increasing fatigue resistance and delaying onset of stress corrosion cracking, shot peening has been used for > 50 years to extend service life of metal components. However, there is no information on the electrochemical behavior of shot peened and hydroxyapatite(HA) coated Ti-6Al-4V alloys. To increase fatigue strength, good corrosion resistance, and biocompatibility, the electrochemical characteristics of Ti/TiN/HA coated and shot peened Ti-6Al-4V alloys by electron beam physical vapor deposition(EB-PVD) have been researched by various electrochemical method in 0.9%NaCl. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. The produced materials were quenched at 1000$^{\circ}C$ under high purity dried Ar atmosphere and were hold at 500$^{\circ}C$ for 2 hrs to achieve the fatigue strength(1140㎫) of materials. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. Shot peening(SP) and sand blasting treatment was carried out for 1, 5, and 10min. On the surface of Ti-6Al-4V alloys using the steel balls of 0.5mm and alumina sand of 40$\mu\textrm{m}$ size. Ti/TiN/HA multilayer coatings were carried out by using electron-beam deposition method(EB-PVD) as shown Fig. 1. Bulk Ti, powder TiN and hydroxyapatite were used as the source of the deposition materials. Electrons were accelerated by high voltage of 4.2kV with 80 - 120mA on the deposition materials at 350$^{\circ}C$ in 2.0 X 10-6 torr vacuum. Ti/TiN/HA multilayer coated surfaces and layers were investigated by SEM and XRD. A saturated calomel electrode as a reference electrode, and high density carbon electrode as a counter electrode, were set according to ASTM GS-87. The potentials were controlled at a scan rate of 100 mV/min. by a potentiostat (EG&G Co.273A) connected to a computer system. Electrochemical tests were used to investigate the electrochemical characteristics of Ti/TiN/HA coated and shot peened materials in 0.9% NaCl solution at 36.5$^{\circ}C$. After each electrochemical measurement, the corrosion surface of each sample was investigated by SEM.

  • PDF

A study on the Bond Strength of Non-Precious Alloys Used for the Porcelain Fused to Metal Crown (도재 전장 금관용 비귀금속 합금의 결합강도에 관한 연구)

  • Kim, Cheol-Man;Lee, Jong-Hyuk;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.3
    • /
    • pp.203-210
    • /
    • 2006
  • Although porcelain fused to metal crowns made from non-precious metal have good mechanical properties, they also have disadvantages such as the poor biological acceptability and the low corrosional resistance. Titanium is used as the alternative metal for porcelain fused to metal crowns, in spite of difficulties in casting. For that reason non-precious alloy including titanium which is easy to cast is currently used. This study evaluated the bond strength between non-precious alloy including titanium and Ni-Cr alloy. $Tilite^{(R)}V$ as non-precious alloy including titanium, $Rexilium^{(R)}V$ as Ni-Cr alloy and $Omega900^{(R)}$ and $Vintage(Regular)^{(R)}$ as porcelain powders were used. The results were as follows. 1. In comparison with the kind of alloy, the bond strength of $Tilite^{(R)}V$ was lower than that of $Rexilium^{(R)}V$. There was no significant difference between two groups. 2. In comparison with the kind of porcelain powder, the bond strength of $Omega900^{(R)}$ was higher than that of $Vintage(Regular)^{(R)}$ in $Tilite^{(R)}V$. There was significant difference between two groups(p < 0.05).

In vitro evaluation of the bond strength between various ceramics and cobalt-chromium alloy fabricated by selective laser sintering

  • Bae, Eun-Jeong;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.312-316
    • /
    • 2015
  • PURPOSE. This study aimed to present the clinical applicability of restorations fabricated by a new method, by comparing the bond strength of between ceramic powder with different coefficient of thermal expansion and alloys fabricated by Selective laser sintering (SLS). MATERIALS AND METHODS. Fifty Co-Cr alloy specimens ($25.0{\times}3.0{\times}0.5mm$) were prepared by SLS and fired with the ceramic ($8.0{\times}3.0{\times}0.5mm$) (ISO 9693:1999). For comparison, ceramics with different coefficient of thermal expansion were used. The bond strength was measured by three-point bending testing and surfaces were observed with FE-SEM. Results were analyzed with a one-way ANOVA (${\alpha}$=.05). RESULTS. The mean values of Duceram Kiss ($61.18{\pm}6.86MPa$), Vita VM13 ($60.30{\pm}7.14MPa$), Ceramco 3 ($58.87{\pm}5.33MPa$), Noritake EX-3 ($55.86{\pm}7.53MPa$), and Vintage MP ($55.15{\pm}7.53MPa$) were found. No significant difference was observed between the bond strengths of the various metal-ceramics. The surfaces of the specimens possessed minute gaps between the additive manufactured layers. CONCLUSION. All the five powders have bond strengths higher than the required 25 MPa minimum (ISO 9693); therefore, various powders can be applied to metal structures fabricated by SLS.

An Experimental Study on Wear of Porcelain Surface to Natural Teeth and Crown Metal Alloys (자연치아 및 치과용 합금에 대한 도재표면 마모에 관한 실험적 연구)

  • Lee, Nung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.19 no.1
    • /
    • pp.47-54
    • /
    • 1981
  • Dental porcelains are widely used for restorative material because of its excellent esthetic property. But according to contact with natural teeth or metal in oral cavity, the porcelain may be worn and may effect on masticatory physiology and prosthetic function. The purpose of this experiment was to study on wear of porcelain surface which treated in different method. Using the abrasion device which was designed and constructed by myself, the different porcelain surface were abraded by gold alloy, nickel-chrome alloy and natural teeth in order to compare roughness. Results were as follows. 1. The group of porcelain abraded by gold alloy showed less surface roughness change (t=2.92, p<0.05), and the group of porcelain abraded by natural teeth had high surface roughness. change (t=6.84, p<0.05). 2. According to the method of surface treatment, the surface roughness were very significant (F=9.12, p<0.05). 3. After abrading, the porcelain surface roughness change was very significant (F=54.49, p<0.05). 4. There was no significant between surface treatment method and the kind of abrading materials. (F=1.01, p>0..05). 5. The group of natural glazing had the most smooth surface ($2.1{\pm}1.13{\mu}m$).

  • PDF

Effects of Improper Metal Crown to Period Onium in Experimental the Dogs (부적합한 금관이 치아주위조직에 미치는 영향에 관한 실험적 연구)

  • Cho, Kun-Ok
    • The Journal of the Korean dental association
    • /
    • v.11 no.5
    • /
    • pp.353-358
    • /
    • 1973
  • The purpose of this study was to determine the gingival response to the various restorations for 3 weeks, 5 weeks and 8 weeks respectively after they had been inserted in 42 tooth of 5dogs. The histopathological observation was also performed to evaluate the effect of the variuos restorations on gingival tissue. They inclued gold, copper and nickel-chrome alloy. The following findings were obtained. 1. The gingivae adjacent to the well adapted and polished restorations and their margins with a level of gingival crest were grossly and histopathologically found no specific changes. 2. The gingive adjacent to the ill fitting and unpolished restorations and their margins with subgingival extension of 1 to 1.5mm were not grossly found any changes but hitopathologically, the inflammatory changes. 3. Thee wee no obvious difference in gingival response among the various alloys in histopathological observation.

  • PDF

Corrosion Characteristics of Ni-Cr and Co-Cr Alloy Used as a Dental Prosthesis and Its Adhesion to Porcelain (Ni-Cr과 Co-Cr 합금을 이용한 치과보철물의 부식 특성 및 도재 접합성)

  • Kim, Kijung;Choi, Byungki;Oh, Doorok;Choi, Byung-Sang
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.141-146
    • /
    • 2016
  • By using Ni-Cr and Co-Cr alloys, porcelain fused to metal (PFM) samples were prepared to examine the interface and the surface corrosion behavior. The potentiodynamic polarization analysis showed that the corrosion current density of Co-Cr alloy ($1.61{\times}10^{-6}A/cm^2$) was three times lower than that of Ni-Cr alloy ($4.83{\times}10^{-6}A/cm^2$) at room temperature. A dental prosthesis consisting of the porcelain fused to Ni-Cr alloy extracted from a patient after approximately four years of usage was examined to assess its resistance to corrosion. OM and SEM images of the metal part revealed a typical pitting corrosion. As compared to porcelain fused to Ni-Cr alloy having a thick layer (${\sim}10{\mu}m$) of oxide at the interface, a relatively thin oxide layer (less than $5{\mu}m$) was formed on Co-Cr alloy, indicating that the interface between Co-Cr alloy and porcelain may have a better adhesion strength than the interface between Ni-Cr alloy and porcelain.

The effect of thermocycling on the bonding of different restorative materials to access opening through porcelain fused to metal restorations

  • Al-Moaleem, Mohammed M.;Shah, Farhan Khalid;Khan, Nausheen Saied;Porwal, Amit
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.4
    • /
    • pp.186-189
    • /
    • 2011
  • PURPOSE. Porcelain fused to metal (PFM) crowns provide the best treatment option for teeth that have a large or defective restoration. More than 20% of teeth with PFM crowns or bridges require non-surgical root canal treatment (NSRCT). This may be due to the effect of restorative procedures and the possible leakage of bacteria and or their by-products, which leads to the demise of the tooth pulp. Thus, this study was planned to compare the ability of the restorative materials to seal perforated PFM specimens. MATERIALS AND METHODS. The study evaluates the ability of amalgam, composite or compomer restorative materials to close perforated PFM specimen's in-vitro. Ninety PFM specimens were constructed using Ni-Cr alloys and feldspathic porcelain, and then they were divided into 3 groups: amalgam (A), composite + Exite adhesive bond (B) and compomer + Syntac adhesive bond (C). All the PFM samples were embedded in an acrylic block to provide complete sealing of the hole from the bottom side. After the aging period, each group was further divided into 3 equal subgroups according to the thermocycling period (one week for 70 cycles, one month for 300 cycles and three months for 900 cycles). Each subgroup was put into containers containing dye (Pelikan INK), one maintained at $5^{\circ}C$ and the other at $55^{\circ}C$, each cycle for 30 sec time. The data obtained was analyzed by SPSS, 2006 using one way ANOVA test and student t-test and significant difference level at (P<.01). RESULTS. The depth of dye penetration was measured at the interfaces of PFM and filling materials using Co-ordinate Vernier Microscope. The lowest levels of the dye penetration for the three groups, as well as subgroups were during the first week. The values of dye leakage had significantly increased by time intervals in subgroups A and C. CONCLUSION. It was seen that amalgam showed higher leakage than composite while compomer showed the lowest level of leakage.

Corrosion Behavior of Si,Zn and Mn-doped Hydroxyapatite on the PEO-treated Surface

  • Park, Min-Gyu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.78-78
    • /
    • 2017
  • Pure Titanium and alloy have been widely used in dental implants and orthopedics due to their excellent mechanical properties, biocompatibility and corrosion resistance. However, due to the biologically inactive nature of Ti metal implants, it cannot bind to the living bone immediately after transplantation into the body. In order to improve the bone bonding ability of titanium implants, many attempts have been made to alter the structure, composition and chemical properties of titanium surfaces, including the deposition of bioactive coatings. The PEO method has the advantages of short experiment time and low cost. These advantages have attracted attention recently. Recently, many metal ions such as silicon, magnesium, zinc, strontium, and manganese have received attention in this field due to their impact on bone regeneration. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation and promotes bone metabolism and growth. Manganese (Mn) is an essential trace metal found in all tissues and is required for normal amino acid, lipid, protein and carbohydrate metabolism. The objective of this work was research on the corrosion behavior of Si, Zn and Mn-doped hydroxyapatite on the PEO-treated surface. Anodized alloys was prepared at 270V~300V voltage in the solution containig Zn, Si, and Mn ions. Ion release test was carried out using potentidynamic and AC impedance method in 0.9% NaCl solution. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, AFM and EDS.

  • PDF