• Title/Summary/Keyword: dental alloy

Search Result 488, Processing Time 0.023 seconds

Effects of Alloying Elements on the Surface Characteristics of Pb-Substrate for Battery (Pb-기판의 표면특성에 미치는 합금원소의 영향)

  • Oh, S.W.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.302-311
    • /
    • 2006
  • Nowadays the open-type lead-acid battery for vehicle use is being replaced with the sealed-type because it needs no maintenance and has a longer cycle life. Thus researches on this battery are being conducted very actively by many advanced battery companies. There is, however, a serious problem with the maintenance free(MF) battery that its cathode electrode has a limited cycle life due to a corrosion of grid. In this study, it was aimed to improve a corrosion resistance of the cathode grid which is commonly made of Pb-Ca alloy for a mechanical strength. For this purpose, various amounts of alloying elements such as Sn, Ag and Ba were added singly or together to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test and their corrosion layers appeared at the interface between the grids and the active materials were carefully observed in order to clarify effects of alloying elements.

Corrosion Behavior of Hard Coated Ti-Zr-N Film on the Tool Steels

  • Eun, Sang-Won;Choe, Han-Cheol
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.289-293
    • /
    • 2010
  • To investigate the corrosion behavior of tools steel surface in various coating film, the surface of hard coated Ti-Zr-N film on the tool steel by using magnetron-sputtering methods was researched using various experimental methods. STD 61 steels were manufactured by using vacuum furnace and solutionized for 1hr at $1050^{\circ}C$. Steel surface was coated with Ti-Zr-N film at $150^{\circ}C$ and 100W for 1h by using DC-sputtering equipment. Surface characteristics of Ti-Zr-N film coated specimens were investigated by OM, XRD, FE-SEM and nano-scratch tester. And corrosion behaviors of the coated specimen were investigated by polarization test and electrochemical impedance spectroscopy(EG&G Co, PARSTAT 2273. USA). It was found that Ti-Zr-N film coated sample had a thick coated layer and showed a good wear resistance and corrosion resistance of surface compared with ZrN and TiN coated sample. The corrosion resistance and mechanical property of Ti-Zr-N film coated STD 61 alloy increased as sputtering time increased.

Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이나사풀림에 미치는 영향)

  • Park, Jae-Kyoung;Jeong, Chang-Mo;Jeon, Young-Chan;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Statement of problem: Dental implant procedure has been recognized as a very effective treatment to rehabilitate fully or partially edentulous patients. However, mechanical failures such as screw loosening, screw fracture have been still reported frequently. Purpose: The purpose of this study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on implant-abutment screw loosening of three different joint connections after one million cyclic loading. Material and methods: The values of detorque before and after loading were measured in three different joint connections (Osstem Implant, Korea), one external butt joint, US II implant system and two internal cones, SS II and GS II system. The values of detorque before loading was analyzed by one-way ANOVA, and two-way ANOVA and Scheffe' test were performed for the value of detorque after loading. Results: 1. The values of initial detorque of tungsten carbide/carbon coated Ti alloy screw were smaller those of Ti alloy screw (P<.01), and there were no differences among implant systems in each screw (P>.05). 2. In comparison of loss rate of detorque value after cyclic loading, US II system was greater than SS II and GS II system but there was no difference between SS II and GS II system (P<.01). 3. Loss rates of detorque value after cyclic loading decreased consistently at tungsten carbide/carbon coated Ti alloy screw comparing with Ti alloy screw in all implant systems (P<.01), and there were no differences among three systems in reduction of loss rates by using tungsten carbide/carbon coated Ti alloy screw (P>.05). Conclusion: Tungsten carbide/carbon coating to increase preload with reduction of friction resistance was a effective way to decrease screw loosening by functional loading.

The Effect of Recasting on the Corrosion behavior of Ni-Cr alloy for Porcelain Fused to Metal Crown (도재용착주조관용 Ni-Cr 합금의 반복주조가 부식거동에 미치는 영향)

  • Bae, Soo-Hyun;Kim, Bu-Sob;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.355-366
    • /
    • 2006
  • The purpose of this study was to determine if repeated casting has a detrimental effect on the corrosion behavior of nickel-chrome casting alloys. The X-ray diffraction analysis, vickers hardness test, SEM, EDX and corrosion test were performed to determine the effects of recasting on chemical composition, microstructure, physical property, castability and corrosion behavior of nickel-chrome casting alloys. The X-ray diffraction analysis results for the cast and recast specimens of the VeraBond and the Rexillium V showed that major crystal phase contained nickel-chrome compounds, Nickel carbide and Chrome carbide. Microstructure analysis results for the cast and recast specimens of the VeraBond and the Rexillium V showed recasting has no effect on microstructure. EDX analysis results indicated the percentage of the main component nickel(Ni) in the specimens of the VeraBond showed a tendency to increase with recasting, but those of other components Carbon(C) showed a tendency to decrease with recasting, Chrome(Cr), Silicon(Si), Aluminium(Al) and molybdenum(Mo) showed no changes in the percentage. The percentage of the main component nickel(Ni) in the specimens of the Rexillium V showed a tendency to increase with recasting, but those of other components silicon(Si), carbon(C) and molybdenum(Mo) showed a tendency to decrease with recasting, chrome(Cr) and aluminium(Al) showed no changes in the percentage. The vickers hardness results for the cast and recast specimens of the VeraBond and the Rexillium V showed a tendency to decrease with recasting, but the differences for the first to fifth cast were not statistically significant. The castability results for the cast and recast specimens of the VeraBond and the Rexillium V showed a tendency to decrease with recasting, but the differences for the first to fifth cast were not statistically significant. The cast and recast specimens of the VeraBond and the Rexillium V showed no differences in the corrosion resistance. The results indicate that the VeraBond and the Rexillium V can be safely recast.

  • PDF

A STUDY OF ION BEAM ASSISTED DEPOSITION(IBAD) OF TiN ON Ni-Cr Be ALLOY FOR SURFACE CHARACTERISTIC (이온빔 보조 증착법에 의한 TiN 박막도포가 니켈-크롬-베릴륨 합금의 표면 성상에 미치는 영향에 관한 연구)

  • Choi, Soo-Young;Lee, Sun-Hyung;Chang, Ik-Tae;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.212-234
    • /
    • 1999
  • Dental restorative materials must have the physical properties to withstand wear and corrosion. Base metal alloys possess better mechanical properties and lower price than the gold alloys. For these reasons such alloys have largely replaced the precious metal alloys. One aspect to con-sider is the release of metal substances to oral environment. The release of elements from dental alloys is a continuing concern because the elements may have the potentially harmful biological effects on local tissues. The purpose of this study was to minimize metal release on the nonprecious metal surfaces by ion beam assisted deposition(IBAD) of titanium nitride (TiN) Ni-Cr-Be alloys with and without TiN coatings were secured in an wear test machine opposing ruby ball to determine their relative resistance to wear with loom, 200m, 300m and 400m sliding distance. And the corrosion behavior of the Ni-Cr-Be alloys with and without TiN coatings and 3 dental noble alloys have been studied. Potentiodynamic curves were used to analyse the corrosion characteristics of the alloys. The measurement of the released Ni and Cr ions was conducted by analysis of the electrolyte solution with atomic absorption spectroscopy. The results were as follows : 1. The critical sliding distance that wore down TiN coatings of $2.5{\mu}m$ thickness in this study condition was 300m. 2. Ion beam assisted deposition of TiN showed a good surface modification with respect to the properties of wear and corrosion resistance. 3. X-ray diffraction showed that the strongest peak of TiN is TiN(111) in the coatings. 4. The release of Ni and Cr ions from alloys measured by means of atomic absorption spectroscopy was reduced by ion beam assisted deposition of TiN.

  • PDF

EFFECTS OF SURFACE ROUGHNESS AND MULTILAYER COATING ON THE CORROSION RESISTANCE OF Ti-6Al-4V ALLOY

  • Ko, Yeong-Mu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.134-135
    • /
    • 2003
  • The dental implant materials required good mechanical properties, such as fatigue strength, combined with a high resistance to corrosion. For increasing fatigue resistance and delaying onset of stress corrosion cracking, shot peening has been used for > 50 years to extend service life of metal components. However, there is no information on the electrochemical behavior of shot peened and hydroxyapatite(HA) coated Ti-6Al-4V alloys. To increase fatigue strength, good corrosion resistance, and biocompatibility, the electrochemical characteristics of Ti/TiN/HA coated and shot peened Ti-6Al-4V alloys by electron beam physical vapor deposition(EB-PVD) have been researched by various electrochemical method in 0.9%NaCl. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. The produced materials were quenched at 1000$^{\circ}C$ under high purity dried Ar atmosphere and were hold at 500$^{\circ}C$ for 2 hrs to achieve the fatigue strength(1140㎫) of materials. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. Shot peening(SP) and sand blasting treatment was carried out for 1, 5, and 10min. On the surface of Ti-6Al-4V alloys using the steel balls of 0.5mm and alumina sand of 40$\mu\textrm{m}$ size. Ti/TiN/HA multilayer coatings were carried out by using electron-beam deposition method(EB-PVD) as shown Fig. 1. Bulk Ti, powder TiN and hydroxyapatite were used as the source of the deposition materials. Electrons were accelerated by high voltage of 4.2kV with 80 - 120mA on the deposition materials at 350$^{\circ}C$ in 2.0 X 10-6 torr vacuum. Ti/TiN/HA multilayer coated surfaces and layers were investigated by SEM and XRD. A saturated calomel electrode as a reference electrode, and high density carbon electrode as a counter electrode, were set according to ASTM GS-87. The potentials were controlled at a scan rate of 100 mV/min. by a potentiostat (EG&G Co.273A) connected to a computer system. Electrochemical tests were used to investigate the electrochemical characteristics of Ti/TiN/HA coated and shot peened materials in 0.9% NaCl solution at 36.5$^{\circ}C$. After each electrochemical measurement, the corrosion surface of each sample was investigated by SEM.

  • PDF

Evaluation of Bioactivity of Titanium Implant Treated with H2O2/HCl Solution (H2O2/HCl 처리한 Ti 임플란트의 생체활성 평가)

  • Yue J. S.;Kwon O. S.;Lee O. Y.;Lee M. H.;Song K. H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.353-360
    • /
    • 2005
  • Surface treatment play an important role in nucleating calcium phosphate deposition on surgical Ti implant. Therefore, the purpose of this study is to examine whether the precipitation of apatite on cp-Ti and Ti alloys are affected by surface modification in HCl and $H_2O_2$ solution. Specimens were then chemically treated with a solution containing 0.1 M HCl and 8.8M $H_2O_2$ at $80^{\circ}C$ for 30 mins, and subsequently heat-treated at $400^{\circ}C$ for 1 hour. All specimens were immersed in the HBSS with pH 7.4 at $36.5^{\circ}C$ for 15 days, and the surface was examined with XRD, SEM, EDX ana XPS. Also, pure Ti, Ti-6Al-4V and Ti-6Al-7Nb alloy specimens with and without surface treatment were implanted in the abdominal connective tissue of mice for 4 weeks. All specimens chemically treated with HCl and $H_2O_2$ solution have the ability to form a apatite layer in the HBSS which has inorganic ion composition similar to human blood plasma. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was $38.57\;{\mu}m,\;62.27\;{\mu}m\;and\;45.64\;{\mu}m$ in the cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloy specimens with the chemical treatment respectively, and $52.20\;{\mu}m,\;75.62\;{\mu}m\;and\;66.56\;{\mu}m$ in the commercial specimens of cp-Ti, Ti-6Al-4V and Ti-6Al-7Nb without any treatment respectively. The results of this evaluation indicate that the chemically treated cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloys have better bioactivity and biocompatibility compared to the other metals tested.

The Effect of Types of Abutment and Dynamic Loading on Microgap between Implant Fixture and Abutment (임플란트 지대주 종류와 동적하중이 고정체와 지대주의 미세간극에 미치는 영향)

  • Oh, Byung-Doo;Choi, Yu-Sung;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • Titanium and gold-alloy abutments have been used for a long-time in the clinical situations, but the use of zirconia abutments also increased. This study was designed to compare and evaluate the microgap differences according to types of abutment and dynamic loading. Titanium abutment, zirconia abutment and gold-alloy abutment (UCLA plastic) were connected into titanium implants of external hexagonal structure US II ${\phi}$ $3.75{\times}11.5$ mm (Osstem Co., Seoul, Korea) with the tightening torque of 30 Ncm. A sine type dynamic loading of 25-250 N and $30^{\circ}$ inclination from long axis was applied for $10^5$ times. Using the SEM both before and after the loadings, implant-abutment interfaces were analyzed on the labial, palatal, mesial and distal surface. The microgaps before and after the loading were compared, no statistically significant difference was observed caused by the dynamic loading on the labial, palatal, mesial or distal surface. Statistically significant difference was observed between UCLA and titanium group and between UCLA and zirconia group on both before and after the loading(p<0.05). No statistically significant difference was found between titanium and zirconia group. Loadings for $10^5$ times did not show significant effect to the microgaps between implants and abutments.

AN ELECTROCHEMICAL STUDY BY USING A POTENTIOSTAT ON THE CORROSION OF AMALGAMS IN SALIVA (Potentiostat를 이용한 타액에서의 아말감부식에 대한 전기화학적 연구)

  • Son, Yoon-Hee;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.534-548
    • /
    • 1994
  • The purpose of this study is to observe the corrosion characteristics of seven dental amalgams (CAULK FINE CUT, CAULK SPHERICAL, OPTALLOY II, DISPERSALLOY, HI VERALOY, TYTIN, VALIANT) through the anodic polarization curve obtained by using a potentiostat. After each amalgam alloy and Hg being triturated, the triturated mass was inserted into the cylindrical metal mold, and condensed by hydrolic pressure(160 kg/$cm^2$). Each specimen was removed from the metal mold. 24 hours after condensation, specimens were polished with the emery paper and stored at room temperature for 1 week. The anodic polarization curves were employed to compare the corrosion behaviours of the amalgam in 0.9% saline solution, Fusayama's artificial saliva, and stimulated parotid saliva at $37^{\circ}C$ with 3-electrode potentiostat. After the immersion of specimen in electrolyte for 1 hour, the potential scan was begun. The potential scan range was. -1700m V ~ + 400m V(vs. S. C. E) in the working electrode and the scan rate was 50m V /sec. The results were as follows, 1. The corrosion potential, the potential of anodic current peak, and transpassive potential in the stimulated parotid saliva shifted to more anodic direction than those in saline solution, and the current density in the stimulated parotid saliva was lower than that in saline solution. Those in Fusayama's artificial saliva was similar to those in stimulated parotid saliva. 2. The anodic polarization profiles in Fusayama's artificial saliva and stimulated parotid saliva indicated a region of slow slope current density, which is extending from the corrosion potential to the potential of anodic current peak, but that in 0.9% saline solution indicated no region of slow slope. 3. The corrosion potentials for CAULK FINE CUT, CAULK SPHERICAL, and OPT ALLOY II had the similarity in 0.9% saline solution, Fusayama's artificial saliva and stimulated parotid saliva, but those for high coper amalgam and VALIANT had no similarity. 4. The current density for TYTIN amalgam in stimulated parotid saliva was the lowest among the others. 5. As for current density, there was no significant difference between palladium enriched VALINAT and other high copper amalgams.

  • PDF

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • Lee, Su-Won;Jeong, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Jeong, Yong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF