• Title/Summary/Keyword: dental alloy

Search Result 486, Processing Time 0.029 seconds

Considerations for the Survival of Complete Arch Implant-Supported Zirconia Restorations; Status of Antagonistic Arches and Stress Distribution on Frameworks: A Case Report

  • Choi, Jung-Yoo;Sim, Jae-Hyuk;Yeo, In-Sung Luke
    • Journal of Korean Dental Science
    • /
    • v.10 no.2
    • /
    • pp.74-81
    • /
    • 2017
  • This report describes two cases of complete arch implant-supported restorations. The first patient had seven dental implants in each arch with monolithic zirconia frameworks. At four weeks' follow-up, the one-piece maxillary framework was fractured, which was re-designed and re-fabricated using laser-sintered cobalt-chrome alloy. The second patient had four implants in the mandible only. A mandibular monolithic zirconia framework and a maxillary conventional complete denture were fabricated and delivered. At five years' follow-up, the patient reported no significant discomfort. Careful consideration and monitoring of the status of antagonistic arches and stress distribution on zirconia frameworks were suggested for complete arch implant-supported fixed restorations.

Comparison of Shear Bond Strength of Ceramic Fused to Ni-Cr and Co-Cr Alloy by Heat Treatment (도재용착용 Ni-Cr 합금과 Co-Cr 합금의 열처리에 따른 전단결합강도 비교)

  • Ahn, Jae-Seok;Ko, Eun-Kyung;Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.33 no.3
    • /
    • pp.185-192
    • /
    • 2011
  • Purpose: This study was to evaluate the shear bond strength of the ceramic fused to Ni-Cr alloy(Bellabond plus) and Co-Cr alloy(Wirobond C) by heat treatment. Methods: Metal specimens were divided into 5 groups for each alloy according to heat treatment conditions prior to porcelain application. Fifteen specimens from each group were subjected to a shear load a universal testing machine using a 0.1mm/min cross-head speed and one specimen from each group was observed with EDX line profile. Results: The diffusion of metal oxide observed far in the specimen heat treated than no heat treated in the opaque layer. The shear bond strength measured highest to BP3(50.50MPa), WC2(50.49MPa) groups and measured lowest from BP1(35.1MPaa), WC1(39.66MPa) groups which were not treated with heat, and there was a significant difference (p<0.05). Conclusion: The shear bond strength of Ni-Cr alloy(Bellabond plus) and Co-Cr alloy(Wirobond C) measured similar 5 groups all.

수종치아수복재료의 조직반응에 관한 연구

  • Chang, Ik-Tae
    • The Journal of the Korean dental association
    • /
    • v.12 no.8
    • /
    • pp.619-622
    • /
    • 1974
  • The purpose of this study was to investigate biological tissue reactions to various restorative dental materials. An experimental pellects was implanted into subdermal tissue in dog subjects observing 1 week, 3 weeks, and 8 weeks respectively. The obtained histo-pathological findings were as follows: 1. Experimental pellets such as gold, ticonium and amalgam alloy are considered biologically acceptable. 2. Experimental results in 1 week dog showed acute inflammatory changes. 3. Experimental results in 8 week dog showed fibrotic and chronic inflammatory changes. 4. Active irritans such as silicate cements revealed acute inflammatory changes in all observed period. 5. Biological tissue to irritants observed.

  • PDF

Evaluation of marginal and internal gaps of Ni-Cr and Co-Cr alloy copings manufactured by microstereolithography

  • Kim, Dong-Yeon;Kim, Chong-Myeong;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.176-181
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the marginal and internal gaps of Ni-Cr and Co-Cr copings, fabricated using the dental ${\mu}-SLA$ system. MATERIALS AND METHODS. Ten study dies were made using a two-step silicone impression with a dental stone (type IV) from the master die of a tooth. Ni-Cr (NC group) and Co-Cr (CC group) alloy copings were designed using a dental scanner, CAD software, resin coping, and casting process. In addition, 10 Ni-Cr alloy copings were manufactured using the lost-wax technique (LW group). The marginal and internal gaps in the 3 groups were measured using a digital microscope ($160{\times}$) with the silicone replica technique, and the obtained data were analyzed using the non-parametric Kruskal-Wallis H test. Post-hoc comparisons were performed using Bonferroni-corrected Mann-Whitney U tests (${\alpha}=.05$). RESULTS. The mean (${\pm}$ standard deviation) values of the marginal, chamfer, axial wall, and occlusal gaps in the 3 groups were as follows: $81.5{\pm}73.8$, $98.1{\pm}76.1$, $87.1{\pm}44.8$, and $146.8{\pm}78.7{\mu}m$ in the LW group; $76.8{\pm}48.0$, $141.7{\pm}57.1$, $80.7{\pm}47.5$, and $194.69{\pm}63.8{\mu}m$ in the NC group; and $124.2{\pm}52.0$, $199.5{\pm}71.0$, $67.1{\pm}37.6$, and $244.5{\pm}58.9{\mu}m$ in the CC group. CONCLUSION. The marginal gap in the LW and NC groups were clinically acceptable. Further improvement is needed for CC group to be used clinical practice.

Shear Bonding Strength by the Characteristic of Metal Oxidation on the Surface of Ni-Cr Alloy for Porcelain Fused Metal Crown (금속-도재관용 Ni-Cr 합금의 표면산화물특성에 따른 전단결합강도 관찰)

  • Chung, In-Sung;Kim, Chi-Young
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.359-364
    • /
    • 2013
  • Purpose: This study was to observe characteristic of metal oxidation and bonding strength according to composition of Ni-Cr alloy for porcelain fused to metal crown. The three kinds of Ni-Cr alloy with different composition ratio of parent metal were observed general properties and chemical properties of each alloy surface and measured the shear bonding strength between ceramic and each alloys. The aim of study was to suggest the material for design of parent metal's composition ratio to development of alloy for porcelain fused to metal crown. Methods: The three kinds of alloy as test specimen was Ni(59wt%)-Cr(24wt%), Ni(67wt.%)-Cr(16wt.%) alloy and Ni(71wt%)-Cr(12wt%)alloy. The oxide on surface was observed by EDX. And the shear test was performed by MTS. Results: The surface property and oxide characteristic analysis of oxide layer, weight percentage of Element O within $Ni_{59}Cr_{24}$ alloy measured 23.03wt%, $Ni_{67}Cr_{16}$ alloy measured 21.13wt% and $Ni_{71}Cr_{12}$ alloy was measured 48.55wt%. And the maximum shear bonding strength was measured 58.02Mpa between $Ni_{59}Cr_{24}$ alloy and vintage halo(H2 group). Conclusion: The surface property and oxide characteristic three kind of Ni-Cr alloy was similar. and shear bonding strength showed the highest bonding strength in H2 specimens.

Mechanical and interfacial characterization of laser welded Co-Cr alloy with different joint configurations

  • Kokolis, John;Chakmakchi, Makdad;Theocharopoulos, Antonios;Prombonas, Anthony;Zinelis, Spiros
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSE. The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS. Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a $45^{\circ}$ bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (${\varepsilon}$) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (${\alpha}$=.05) and Weibull analysis where Weibull modulus m and characteristic strength ${\sigma}_0$ were identified. Fractured surfaces were imaged by a SEM. RESULTS. SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ${\varepsilon}$, m and ${\sigma}_0$) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION. The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability.

The Impacts of the Recasting of Non-precious Metal Alloy for Porcelain Fused to Metal Crowns on Strength (도재소부금관용 비귀금속 합금의 반복주조가 강도에 미치는 영향)

  • Chung, Hee-Sun;Oh, Gyung-Jae
    • Journal of Technologic Dentistry
    • /
    • v.31 no.3
    • /
    • pp.27-34
    • /
    • 2009
  • This study compared and analyzed changes to the mechanical characteristics to nonprecious metal alloy for porcelain fused to metal crowns when it's repetitively used without the addition of new alloy. Metal samples were made with the Verabond V nonprecious metal alloy. Those samples to measure tensile and yield strength were made in the standardized design(ISO 22674), those to measure bond strength in the $25mm{\times}3mm{\times}0.5mm$ format, and those to measure hardness in the $10mm{\times}10mm{\times}1mm$ format. A ceramic to measure bond strength was made at the center of the metal sample in the length of $8{\ss}{\AE}$ by using Noritaker Super Porcelain EX-3. Ten samples were prepared for one, three and five repetitions of casting each. The test results were as follows: 1. The more casting was repeated, the more significantly tensile strength dropped. 2. The more casting was repeated, the more significantly yield strength dropped. 3. Repetitive casting didn't cause significant changes to bond strength. 4. The Vickers hardness significantly fell with increasing repetitions of casting. There were no changes to bond strength observed with the increasing number of repeating casting. But tensile strength, yield strength, and Vickers hardness decreased. Those results indicate that repeated casting can affect durability and that careful attention should be paid by avoiding repetitive use or excessive increase of uses when no new alloy is added.

  • PDF

A study on interfacial characteristics of Ni-Cr alloy by Nb content for Porcelain Fused to Metal Crown (금속소부도재관용 Ni-Cr 합금에 첨가된 Nb이 계면특성에 미치는 영향)

  • Kim, Chi-Young;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.97-104
    • /
    • 2005
  • The effect of Nb on interfacial bonding characteristics of Ni-Cr alloy for porcelain fused to metal crown (PFM) has been studied in order to investigate oxide layer. A specimens, which is 0.8mm in thickness, were fired at 1,000$^{\circ}C$ with four tests such as air, vacuum, air for 5 minutes and vacuum for 5 minutes in order to examine an oxide behavior of alloy surface generated by the adding of Nb to be controlled at a rate of 0, 1, 3 and 5. It observed oxide film form of the fired specimens with optical microscope and scanning electron microscope (SEM), and chemical formation of them with energy disperse X-ray spectroscopy (EDX). The other specimens, which is 2mm in thickness, were fired at 1,000$^{\circ}C$ with air and vacuum in order to analyze the diffusion behaviors of alloy-porcelain interface by X-ray dot mapping. The results of this study were as follows: 1. The observation of microstructure of specimens by SEM showed that the more Nb content is high, the more much intermediate compound of rich Nb is observed. 2. The surface morphology of oxide film is most dense in 3% Nb. The heat treatment in air constitutes denser oxide film than heat treatment under vacuum. 3. The diffusion behavior of oxide layer by X-ray dot mapping showed that Si, Al of porcelain diffuse toward metal.

  • PDF

Formation of Bioactive Surface by PEO-treatment after 2nd ATO Technique of Ti-6Al-4V Alloy (Ti-6Al-4V 합금에 2nd ATO 처리 후 플라즈마 전해 산화법에 의한 생체활성표면형성)

  • Lim, Sang-Gyu;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.74-74
    • /
    • 2018
  • Ti-6Al-4V alloys have been widely used as orthopedic materials because of their excellent corrosion resistance and mechanical properties. However, it does not bind directly to the bone, so it requires a surface modification. This problem can be solved by nanotube and micropore formation. Plasma electrolytic oxidation (PEO) treatment for micropore, which combines high-voltage spark and electrochemical oxidation, is a new way of forming a ceramic coating on light metals such as titanium and its alloys. This method has excellent reproducibility and can easily control the shape and size of the Ti alloy. In this study, formation of bioactive surface by PEO-treatment after $2^{nd}$ ATO technique of Ti-6Al-4V alloy was invesgated by various instrument. Nanotube oxide surface structure was formed on the surface by anodic oxidation treatment in 0.8 wt.% NaF and 1M $H_3PO_4$ electrolytes. After nanotube formation, nanotube layer was removed by ultrasonic cleaning. PEO-treatment was carried out at 280V for 3 minutes in the electrolytic solution containing the bioactive substance (Mg, Zn, Mn, Sr, and Si). The surface of Ti-6Al-4V alloy was observed by field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan). An energy dispersive X-ray spectrometer (EDS, Inca program, Oxford, UK) was used to analyze the spectra of physiologically active Si, Mn, Mg, Zn, and Sr ions. The PEO film formed on the Ti-6Al-4V alloy surface was characterized using an X-ray diffractometer (TF-XRD, X'pert Philips, Netherlands). It is confirmed that bioactive ions play an essential role in the normal bone growth and metabolism of the human skeletal tissues.

  • PDF