대한치과기공학회지 제27권 제1호 2005년 7월 J Kor Aca Den Tech 27(1) : 97~104, 2005

금속소부도재관용 Ni-Cr 합금에 첨가된 Nb이 계면특성에 미치는 영향

김 치 영, 최 성 민*

(부산가톨릭대학교 치기공학과, 인제대학교 의용공학과*)

Abstract

A study on interfacial characteristics of Ni-Cr alloy by Nb content for Porcelain Fused to Metal Crown

Chi-Young Kim, Sung-Min Choi*

Department of Dental Laboratory Science, Catholic University of Pusan. Department of Biomedical Engineering, Inje University.*

The effect of Nb on interfacial bonding characteristics of Ni-Cr alloy for porcelain fused to metal crown (PFM) has been studied in order to investigate oxide layer. A specimens , which is 0.8 mm in thickness, were fired at 1,000 °C with four tests such as air, vacuum, air for 5 minutes and vacuum for 5 minutes in order to examine an oxide behavior of alloy surface generated by the adding of Nb to be controlled at a rate of 0, 1, 3 and 5. It observed oxide film form of the fired specimens with optical microscope and scanning electron microscope (SEM), and chemical formation of them with energy disperse X-ray spectroscopy (EDX). The other specimens, which is 2 mm in thickness, were fired at 1,000 °C with air and vacuum in order to analyze the diffusion behaviors of alloy-porcelain interface by X-ray dot mapping.

The results of this study were as follows:

1. The observation of microstructure of specimens by SEM showed that the more Nb content is high, the more much intermediate compound of rich Nb is observed.

교신 ■성명:김치영 ■전화:051-510-0592 ■E-mail:cykim@cup.ac.kr 저자 ■주소:부산광역시 금정구 부곡3동 9번지 부산가톨릭대학교 치기공학과 2. The surface morphology of oxide film is most dense in 3% Nb. The heat treatment in air constitutes denser oxide film than heat treatment under vacuum.

3. The diffusion behavior of oxide layer by X-ray dot mapping showed that Si, Al of porcelain diffuse toward metal.

• Key word : Ni-Cr alloy for PFM, Nb(niobium), oxide film, interfacial diffusion.

I.서 론

금속소부도재관(Pocelain Fused to Metal Crown: PFM)용 합금은 1970년대 이후 저렴하 면서도 귀금속 합금의 우수한 특성을 나타내는 소재로의 대체를 위한 연구가 많이 실행되었다. PFM용 합금의 성공 여부는 합금과 도재간의 용 착강도에 따라 결정되며, 금속-도재간의 확산 과 합금 표면의 산화피막의 특성이 용착강도를 높이는데 영향을 주게 된다(Watanabe, 1989; Osvaldo et al. 1998; Deger & Caniklioglu, 1998). PFM용 합금은 Ni-Cr계 합금과. Co-Cr계 합금, Ti계 합금이 사용되고 있다. 현재는 주조성, 조작성이 우수하다는 이유로 Ni-Cr계 합금을 널리 사용 하고 있다. PFM용으로 사용 하는 Ni-Cr계 합금의 조성은 일반적으로 Ni(68%~80%). Cr(11%~20%)으로 구성하고 첨 가원소로 Mo. Mn. Al. Si. Be. Ti. Cu. C. Fe 등을 사용하여 물리적, 화학적 특성을 조절한다 (McLean, 1980). 첨가 원소 중 시판 Ni-Cr계 합금에 대부분 함유되어 있는 Be는 금속-도재 간의 밀착성과 결합강도를 높이기 위하여 2%이 하로 첨가되지만 주조과정에서의 증기화와 연삭 과정에서 발생하는 미세 분진의 흡입시 대표적

인 발암물질로 인체에 대한 유해성이 심각한 문 제를 가지고 있다(Moffa et al, 1973). Be의 이 러한 문제점을 해소하며 합금의 기능을 높일 수 있는 첨가원소 중의 하나로 관심을 끌고 있는 Nb는 금속간화합물로 합금 중에 존재하여 연성 과 전성을 향상시키며, 고온에서 결정립의 조대 화 온도를 상승시켜 결정립의 조대화를 방지한 다(Park et al, 1998). 그리고 고온내산화성을 향상시켜 합금과의 밀착성이 좋은 산화피막층을 형성하며 현재 생체친화성 합금의 미량첨가원소 로 사용 되어지고 있다.

본 연구에서는 Ni-Cr 합금에 내산화성이 우 수하고 생체친화성을 가지는 첨가원소로 Nb를 선택, 미소함량을 변화시킨 Ni-Cr-Nb 합금을 제조하고 함량에 따른 도재-금속계면의 특성에 미치는 영향을 고찰하고자 하였다.

Ⅱ. 실험 방법

1. 합금 설계 및 제작

시판 되고 있는 Ni-Cr 합금의 조성을 기초하 여 Ni, Cr, Mo, Si 의 비율을 유지하고 Nb의 함 량을 0, 1, 3, 5 wt%로 분말시료를 정량하여 용 해를 준비하였고 준비된 시료는 용융도가니에 Mo, Nb, Cr, Ni Si 순으로 장입하여 진공고주 파로(GLOBUCAST[®](Krupp Medizintechnik Gmbh, Germany)를 이용하여 0.8bar의 진공 조건으로 용해하여 합금 주괴를 얻었다. 주괴는 Nb-0, Nb-1, Nb-3, Nb-5로 4가지 주괴를 얻었다⟨Table. 1⟩.

(Table. 1) Chemical composition design of specimens in weight

					(wt%)	
Specimen	NÞ	Cr	M●	Si	Ni	
Nb-0	0	15	8	2		
Nb-1	1	15	8	2	Remainder	
Nb-3	3	15	8	2		
Nb-5	5	14	8	2		

2. 시험편 제작

준비된 각각의 주괴를 절단하여 2차 주조하여 시험편을 만들고 조건에 따라 열처리하여 분석 시험편을 준비하였다.

1) 합금 조직 및 산화피막 관찰용 시험편

합금의 금속 조직학적 관찰과 산화피막층의 관찰을 위하여 두께 0.8mm에 길이가 10mm인 정 사각형 시편을 통법에 의하여 원심주조를 하여 50µm의 Al₂O₃로 sand blasting하고 세정 후 시 험편을 준비하고 도재용 전기로 (Jae Myoung Industrial Co., Korea)를 이용하여 산화피막 열처리를 실시하였다. 열처리 조건은 대기 중과 진공으로 분류하고 700℃에서 1000℃까지 온 도를 상승하여 5분간 계류를 하는 시험편과 계 류하지 않은 시험편으로 나누어 Nb 함량에 시 험편 각각 4가지 조건의 열처리 시험편을 준비 하였다〈Table, 2〉.

(Table. 2) Preheat treatment conditions for surface oxidization

Heating condition (53°C/min.)	Starting and finishing temperature(°C)	Held time at 1000°C(min.)	
Air	700 → 1000	-	
Air	700 → 1000	5	
Vacuum (700 mm/Hg)	700 → 1000	_	
Vacuum (700 mm/Hg)	700 → 1000	5	

2) 도재-합금 계면관찰용 시험편

합금의 금속 조직학적 관찰과 산화피막층의 관찰을 위하여 두께 2mm에 길이가 20mm인 정사 각형 시편을 통법에 의한 원심주조를 하고 시험 편의 표면은 50μm의 Al2O3로 sand blasting하 고 세정 후 표면을 #320, #600, #800, # 1000의 silicon carbon paper로 조절한 후 50 μm의 Al₂O₃로 sand blasting하고 steam cleaner(Omec Co. Italy)로 세정하여 준비하였 다. 준비된 시험편은 도재용 전기로(Jae Myoung Industrial Co., Korea)를 사용하여 〈Table. 3〉과 같이 열처리한 후 paint opaque 을 엷게 도포, 소성하고 그 위에 두께 2mm의 dentin 도재를 축성하여 용착 처리하였다 〈Table. 4〉.

Heating environment	Heating rate from 700°C to 1000°C(°C/min.)
Air	53
Vacuum(700 mmHg)	53

(Table. 3) Preheat treatment schedule for metal part of interfacial diffusion specimens

(Table. 4) Firing condition for porcelain part of interfacial diffusion specimens

Pewder type	Firing envirenment (53°C/min)	Starting and finishing temperature(°C)	
Paint opaque	Vacuum(700 mmHg)	650 → 980	
Dentin	Vacuum(700 mmHg)	600 → 930	

3. 합금 조직 및 산화 피막 관찰

Nb 함량에 따른 합금의 조직 변화를 관찰하기 위하여 시편의 횡단면으로 절단하여 준비된 Mounting Press(MOT-FTA2 (주)에프텍기기) 몰드에 시편을 횡단면으로 넣고 AM1133(ALPHA, USA)을 이용하여 분석용 시 편을 제조하고 시편을 경면연마 하기 위하여 # 150. #600. #1000 샌드페이퍼를 이용하여 Phoenix Beta Grinder / Polihser (BUEHLER[®], USA) 장비를 사용하여 차례로 연마 후 경면연마는 Phoenix Beta Grinder / Polihser (BUEHLER[®], USA) 장비를 사용하 여, 연마된 시편을 평균입자 9㎞ 크기와 1㎞ 크 기의 diamond suspension (Metadi Suprem Polycrystalline, BUEHLER[®], USA)을 사용하 여 경면연마를 실시하고 마지막으로 평균입자 0.05µm 크기의 polishing suspension을 사용 하여 최종 경면연마를 실시하여 조직 분석용 시 편을 준비 하였다. 조직 분석용 시험편을 조직

관찰을 위하여 Ni계 합금의 조직 부식에 사용하는 CuCl₂·2H₂O(2g)에 HCl(20ml)를 조금씩 첨가하며 혼합 한 후 95% methanol(80ml)을 넣고 혼합한 부식액으로 상온에서 10~30 초간 부식시켰다. 부식된 조직관찰용 시험편은 SEM(HITACHI S-2400, Japan)으로 표면 조직을 관찰하고 EDX(Energy dispersive X-ray spectroscopy)로 합금의 성분을 정량분석하였다. 그 후 부식 표면에 열처리 된 시편의 표면에 생성된 산화물의 형태 및 형성도를 SEM으로 관찰하였다.

4. 도재-합금 계면관찰

도재-합금 계면관찰용 시험편의 계면의 관찰 을 위하여 횡단면으로 절단하고 합금 조직 및 산 화 피막 관찰용 시험편과 같은 방법으로 시험편 을 연마하여 관찰용 시험편을 준비하였다. 도 재-금속간 계면 관찰은 X-ray dot mapping으 로 금속, 금속-도재 계면 및 도재부분의 성분 원소를 정성적으로 분석하여 산화피막의 두께를 유추, 측정하였다.

Ⅲ. 실험결과 및 고찰

1. 합금 조직 및 산화 피막 관찰 결과

합금 조직 및 산화 피막을 관찰한 결과⟨Fig. 1〉, 열처리분위기에 관계없이 Nb의 함유에 따 라 2차상의 석출이 나타난 것을 알 수 있으며 석

(Fig. 1) SEM surface picture of specimens (heat treated at 1000°C,×1000)

• A1 : 0% Nb in air, • A2 : 1% Nb in air, • A3 : 3% Nb in air, • A4 : 5% Nb in air • V1 : 0% Nb in vacuum, • V2 : 1% Nb in vacuum, • V3 : 3% Nb in vacuum, • V4 : 5% Nb in vacuum

출물의 형상과 분포가 다르게 나타났다. 석출물 의 구성성분을 보면 〈Table, 5〉에서와 같이 Ni, Cr의 비는 낮아지는 반면에 Nb과 Mo의 비는 높아지는 것으로 나타났다. 또한 Nb의 첨가에 따라 표면조직이 더 치밀해 지는 것으로 나타났 다. 표면 부식에 있어서는 Nb의 첨가량이 증가 함에 따라 표면부식에 소요되는 시간이 증가하 여 Nb 5%의 경우 10초, 20초간의 부식에는 표 면조직이 관찰되지 않았으며 30초간 부식시켰 을 때 최소한의 조직이 관찰되어 Nb의 첨가량 ⟨Table. 5⟩ The EDX result of the Ni–Cr alloy specimen

						(ui	III. VVI /0,
	Compos	itien	Ni	Cr	Me	Si	NÞ
Specimen						•	
	Nb-0	М	75.47	14.76	7.81	1.96	-
	Nb-1	М	76.44	13.26	4.97	1.63	3.70
		P_1	63.18	13.78	11.44	4.05	7.54
	Nb-3	М	74.40	13.83	5.84	1.92	4.01
Air		P_1	65.38	12.73	9.85	2.47	9.56
	Nb-5	М	71.99	13.06	7.96	1.66	5.33
		P_1	65.42	9.20	10.79	4.32	10.27
		P_2	56.62	11.38	12.64	2.12	17.23
/acuum	Nb-0	М	76.97	13.99	8.08	0.96	-
		P_1	72.81	15.59	8.97	2.63	-
	M 77.65 1 Nb-1 P ₁ 74.05	М	77.65	13.34	4.93	1.38	2.71
		12.14	6.94	2.62	4.24		
	Nb-3	М	70.32	13.53	8.32	2.02	5.81
		P_1	69.58	11.98	9.07	3.49	5.88
	Nb-5	М	71.83	12.21	8.21	2.47	5.27
		P1	65.99	10.22	9.87	4.49	9.43
		P2	60.64	11.03	12.29	2.65	13.39

M: matrix, P1: phase 1, P2: phase 2

이 증가할수록 내식성이 높아지는 것으로 판단 된다.

〈Fig. 2〉에서와 같이 SEM으로 시편의 표면을 관찰한 결과 시편의 표면에 생성된 산화피막의 형태는 열처리 분위기에 관계없이 3% Nb 합금 에서 가장 조밀한 형태의 표면 산화물이 관찰되 었다. 1% Nb 합금의 표면 산화물 형태는 3% Nb 합금보다 조대한 형상을 나타내고 있었다. 공기분위기로 열처리를 실시한 경우가 진공으로 열처리했을 때보다 표면 산화물의 형태가 더욱 조밀한 것으로 나타났다. 또한 0% Nb 합금과

(Fig. 2) SEM surface picture of oxide film of specimens (heat treated at 1000°C, ×1000)
•A1: 0% Nb in air, •A2: 1% Nb in air, •A3: 3% Nb in air, •A4: 5% Nb in air, •V1: 0% Nb in vacuum, •V2: 1% Nb in vacuum, •V3: 3% Nb in vacuum, •V4: 5% Nb in vacuum

5% Nb 합금은 공기 중에서 열처리했을 때보다 도 진공에서 열처리한 시편의 표면에 생성된 산 화물의 형태가 더 거칠고 크기도 커지는 것으로 관찰되었다.

2. 도재-합금 계면관찰

합금시편위에 도재를 축성하고 소성하여 그 횡단면을 X-ray mapping 한 것을 〈Fig. 3~6〉 에 나타내었다. 그 결과를 보면 합금과 도재사이 에 뚜렷하게 산화물 확산층이 형성되었음이 관 찰되었다. 형성된 산화물 확산층의 두께변화를 〈Table. 6〉에 나타내었다. 이를 보면 합금 표면 에 형성되었던 산화피막층이 도재소성시 확산이

(Table. 6) Thickness of diffusion layer of oxide

Specimen	Thickness ●f diffusi●n layer ●f ●xide()m)				
Nb 0%	56				
Nb 1%	34				
Nb 3%	61				
Nb 5%	52				

(Fig. 3) X-ray mapping of porcelain-metal interface. (0% Nb, heat-treated at 1000°C in vacuum)

(Fig. 4) X-ray mapping of porcelain-metal interface.(1% Nb, heat-treated at 1000°C in vacuum)

(Fig. 5) X-ray mapping of porcelain-metal interface.(3% Nb, heat-treated at 1000°C in vacuum)

(Fig. 6) X-ray mapping of porcelain-metal interface. (5% Nb, heat-treated at 1000°C in vacuum)

잘 진행되는 도재내부로 확산되어 산화물 확산 층이 형성된 것으로 사료된다. 산화피막층이 합 금측으로 확산이 미미한 것은 산화피막과 도재 와의 확산계수와 용해도가 더 높기 때문인 것으 로 사료되다.

그 결과로 진공분위기로 1000℃에서 열처리 한 0% Nb 합금시편의 도재와 금속 계면에 형성 된 산화물 확산층의 성분원소들이 도재 쪽으로 확산된 것으로 나타났다〈Fig. 3〉.

진공분위기로 1000℃에서 열처리한 1% Nb

합금시편에서는 Nb X-ray mapping graph를 보면 산화물 확산층에 약간의 Nb이 측정되었으 며 산화피막층이 도재 쪽으로 확산되어 34µm 두께의 산화물 확산층이 형성되었다〈Fig. 4〉.

3% Nb 합금시편은 산화피막층이 도재 쪽으로 확산되어 61,4m 두께의 산화물 확산층이 형성되 었다〈Fig. 5〉.

5% Nb 합금시편에서는 산화피막층이 도재 쪽 으로 확산되어 52µm두께의 산화물 확산층이 형 성되었다〈Fig. 6〉.

산화물 확산층을 중심으로 원소들의 확산거동 을 비교해 볼 때 합금원소인 Ni 등의 도재 쪽으 로의 확산은 관찰되지 않았으며 도재의 구성성 분인 Si와 Al이 금속과의 계면으로 확산됨이 관 찰되었다. 이는 도재분말에 첨가된 Al 이온이 계면으로 더 많이 확산해나가며 이것이 Cr, Ni 이온의 확산을 감소시킨다는 보고(Wu et al, 1991)와 일치하는 것이다. 또한 Nb은 계면에서 도재 쪽으로의 농도증가는 나타나지 않았으나 확산양상을 보이는 것으로 나타났으며 합금에서 는 부분적으로 이차상을 형성한 Nb rich phase 를 볼 수 있었다.

Ⅳ. 결 론

도재-금속관용 Ni-Cr합금에서 Nb의 함량 변 화에 따라 열처리 후 합금조직형태와 합금표면 의 산화피막을 관찰하고, 도재-합금 계면을 분 석하여 다음과 같은 결과를 얻었다. 1. SEM 분석으로 시험편들의 조직 형태를 관 찰한 결과 합금의 조성 중 Nb함량이 높아질수 록 Nb이 풍부한 중간화합물상이 더 많이 관찰 되었다.

2. 산화피막의 표면 형상은 3% Nb에서 가장 조밀하게 관찰되었으며. 진공소성보다는 대기소 성의 경우가 더 조밀한 형태를 나타내었다.

3. X-ray mapping에서 나타난 도재-합금 계면에서 원소들의 확산거동으로 합금원소인 Ni 등의 도재 쪽으로의 확산은 관찰되지 않았으 며 도재의 구성성분인 Si와 Al이 금속과의 계면 으로 확산됨이 관찰되었다.

참고 문 헌

- Deger S, Caniklioglu MB. Effects of tin plating on base metal alloyceramic bond strength. Int J Prosthodont, Mar-Apr;11(2): 165-72, 1998.
- McLean JW. science and art of dental ceramics. Chicago, Quintessence, 189-191, 1980.
- Moffa JP, Guckes AD, Okawa MT et al. An evaluation of nonprecious alloys for use with porcelain veneers. Part I. Industrial safety and biocompatibility. J Prosthet Dent, 30: 432, 1973.

- Park HK, Gokhale AB, Kumer P et al. Met Trans, 21B: 845, 1990.
- Osvaldo L. Bezzon, Maria DG, Mattosc, Ricardo FR. et al. Effect of beryllium on the castability and resistance of ceramometal bonds in nickel-chromium alloys. J Prosthet Dent, 80(5): 570-4, 1998.
- Watanabe T. Composition and morphology of oxides on porcelain fused to Ni-Cr alloys. Be containing alloys. Aichi Gakuin Daigaku Shigakkai Shi. Jun; 27, 1989.
- Wu Y, Moser JB, Jameson LM et al. The effect of oxidation heat treatment of porcelain bond strength in selected base metal alloys. J Prosthet Dent, 66: 439, 1991.