• Title/Summary/Keyword: density predictive model

Search Result 57, Processing Time 0.035 seconds

Bayesian Prediction Inference for Censored Pareto Model

  • Ko, Jeong-Hwan;Kim, Young-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.147-154
    • /
    • 1999
  • Using a noninformative prior and an inverted gamma prior, the Bayesian predictive density and the prediction intervals for a future observation or the p - th order statistic of n' future observations from the censord Pareto model have been obtained. In additions, numerical examples are given in order to illustrate the proposed predictive procedure.

  • PDF

Density Predictive Model within the On-Ramp Merge Influence Areas of Urban Freeway - Based on the Beonyoungro in the Metropolitan City of Busan - (도시고속도로의 유입연결로 합류영향권내 밀도추정모형 구축에 관한 연구 -부산광역시 번영로를 대상으로 -)

  • Kim, Tae Gon;Pyo, Jong Jin;Kwon, Mi Hyun;Jo, In Kook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.287-293
    • /
    • 2008
  • Density is used as the measure of effectiveness within the ramp junction influence area suggested in the KHCM 2005 in the LOS analysis of the ramp junction, and also density predictive models suggested in the KHCM 2005 is constructed based on the expressway with the speed limit of 100km/h or 110km/h in Korea. So, the density predictive models suggested in the KHCM 2005 are needed to verify if the models could be applied to the urban freeway with the speed limit of 80km/h or less, because the speed limits on most of the urban freeways in Korea are 80km/h or less. The purpose in this study is to construct and verify the appropriate density predictive model within the on-ramp merge influence area of the urban freeway by comparing with the USHCM 2000 and KHCM 2005 models.

Prediction of extreme rainfall with a generalized extreme value distribution (일반화 극단 분포를 이용한 강우량 예측)

  • Sung, Yong Kyu;Sohn, Joong K.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.857-865
    • /
    • 2013
  • Extreme rainfall causes heavy losses in human life and properties. Hence many works have been done to predict extreme rainfall by using extreme value distributions. In this study, we use a generalized extreme value distribution to derive the posterior predictive density with hierarchical Bayesian approach based on the data of Seoul area from 1973 to 2010. It becomes clear that the probability of the extreme rainfall is increasing for last 20 years in Seoul area and the model proposed works relatively well for both point prediction and predictive interval approach.

Bayes Prediction Density in Linear Models

  • Kim, S.H.
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.797-803
    • /
    • 2001
  • This paper obtained Bayes prediction density for the spatial linear model with non-informative prior. It showed the results that predictive inferences is completely unaffected by departures from the normality assumption in the direction of the elliptical family and the structure of prediction density is unchanged by more than one additional future observations.

  • PDF

The Linear Density Predictive Models on the On-Ramp Junction in the Urban Freeway (도시고속도로의 진입연결로 접속부내 선형의 밀도예측모형 구축에 관한 연구)

  • Kim, Tae Gon;Shin, Kwang Sik;Kim, Seung Gil;Kim, Jeong Seo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.59-66
    • /
    • 2006
  • This study was to construct the linear density predictive models on the on-ramp junctions in urban freeway. From the analyses of the real-time traffic characteristic data, and the construction and verification of the linear density predictive models, the models showed a considerable explanatory power with the determination coefficients ($R^2$) of over 0.7 between the density and speed data. Also, they showed a considerably high correlativeness with the correlation coefficients (r) of over 0.8 between the calculated density data and the expected ones estimated by the models.

Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology

  • Ali, Mourad Ben Sik;Hamrouni, Bechir
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.127-141
    • /
    • 2016
  • Electrodialysis (ED) is known to be a useful membrane process for desalination, concentration, separation, and purification in many fields. In this process, it is desirable to work at high current density in order to achieve fast desalination with the lowest possible effective membrane area. In practice, however, operating currents are restricted by the occurrence of concentration polarization phenomena. Many studies showed the occurrence of a limiting current density (LCD). The limiting current density in the electrodialysis process is an important parameter which determines the electrical resistance and the current utilization. Therefore, its reliable determination is required for designing an efficient electrodialysis plant. The purpose of this study is the development of a predictive model of the limiting current density in an electrodialysis process using response surface methodology (RSM). A two-factor central composite design (CCD) of RSM was used to analyze the effect of operation conditions (the initial salt concentration (C) and the linear flow velocity of solution to be treated (u)) on the limiting current density and to establish a regression model. All experiments were carried out on synthetic brackish water solutions using a laboratory scale electrodialysis cell. The limiting current density for each experiment was determined using the Cowan-Brown method. A suitable regression model for predicting LCD within the ranges of variables used was developed based on experimental results. The proposed mathematical quadratic model was simple. Its quality was evaluated by regression analysis and by the Analysis Of Variance, popularly known as the ANOVA.

Model Predictive Control of the Melt Index in High-Density Polyethylene(HDPE) Process (고밀도 폴리에틸렌 공정의 Melt Index 모델예측제어에 관한 연구)

  • Lee, Eun Ho;Kim, Tae Young;Yeo, Yeong Koo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1043-1051
    • /
    • 2008
  • In polyolefin processes melt index (MI) is the most important controlled variable indicating product quality. Because of the difficulty in the on-line measurement of MI, a lot of MI estimation and correlation methods have been proposed. In this work a new dynamic MI estimation scheme is developed based on system identification techniques. The empirical MI estimation equation proposed in the present study is derived from the $1^{st}$-order dynamic models. Effectiveness of the present estimation scheme was illustrated by numerical simulations based on plant operation data including grade change operations in high density polyethylene (HDPE) processes. From the comparisons with other estimation methods it was found that the proposed estimation scheme showed better performance in MI predictions. Using the model predictive control method based on the present dynamic MI estimation model, MI values are estimated and compared with those of MI setpoints. From the numerical simulation of the proposed control system, it was found that significant reduction of transition time and the amount of off-spec during grade changes were achieved.

Property Control in a Continuous MMA Polymerization Reactor using EKF based Nonlinear Model Predictive Controller

  • Ahn, Sung-Mo;Park, Myung-June;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.468-473
    • /
    • 1998
  • A mathematical model was developed for a continuous re-actor in which free radical polymerization of methyl methacrylate (MMA) occurred. Elementary reactions considered in this study were initiation, propagation, termination, and chain transfers to monomer and solvent. The reactor model took into account the density change of the reactor contents and the gel effect. A control system was designed for a continuous reactor using extended Kalman filter (EKF) based non-linear model predictive controller (NLMPC) to control the conversion and the weight average molecular weight of the polymer product. Control input variables were the jacket inlet temperature and the feed flow rate. For the purpose of validation of the control strategy, on-line digital control experiments were conducted with densitometer and viscometer for the measurement of the polymer properties. Despite the com-plex and nonlinear features of the polymerization reaction system, the EKF based NLMPC performed quite satisfactorily for the property control of the continuous polymerization reactor.

  • PDF

Electromagnetic energy harvesting from structural vibrations during earthquakes

  • Shen, Wenai;Zhu, Songye;Zhu, Hongping;Xu, You-lin
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.449-470
    • /
    • 2016
  • Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

Bayesian Method for Modeling Male Breast Cancer Survival Data

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Rana, Sagar;Ahmed, Nasar Uddin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.663-669
    • /
    • 2014
  • Background: With recent progress in health science administration, a huge amount of data has been collected from thousands of subjects. Statistical and computational techniques are very necessary to understand such data and to make valid scientific conclusions. The purpose of this paper was to develop a statistical probability model and to predict future survival times for male breast cancer patients who were diagnosed in the USA during 1973-2009. Materials and Methods: A random sample of 500 male patients was selected from the Surveillance Epidemiology and End Results (SEER) database. The survival times for the male patients were used to derive the statistical probability model. To measure the goodness of fit tests, the model building criterions: Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) were employed. A novel Bayesian method was used to derive the posterior density function for the parameters and the predictive inference for future survival times from the exponentiated Weibull model, assuming that the observed breast cancer survival data follow such type of model. The Markov chain Monte Carlo method was used to determine the inference for the parameters. Results: The summary results of certain demographic and socio-economic variables are reported. It was found that the exponentiated Weibull model fits the male survival data. Statistical inferences of the posterior parameters are presented. Mean predictive survival times, 95% predictive intervals, predictive skewness and kurtosis were obtained. Conclusions: The findings will hopefully be useful in treatment planning, healthcare resource allocation, and may motivate future research on breast cancer related survival issues.