Journal of the Korean
Data & Information Science Society
1999, Vol. 10, No.1, pp. 147 ~ 154

Bayesian Prediction Inference for Censored Pareto
Model !

Jeong Hwan Ko? - Yeung-Hoon Kim?

Abstract

Using a noninformative prior and an inverted gamma prior, the Bayesian
predictive density and the prediction intervals for a future observation or the
p — th order statistic of n’ future observations from the censord Pareto model
have been obtained. In additions, numerical examples are given in order to
illustrate the proposed predictive procedure.
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1. Introduction

The Pareto distribution has played an important role in the investigations of
city population sizes, income distributions, insurance risk, business risk, etc. A
few authors have studied the Bayesian inference procedures for the Pareto distri-
bution. Muniruzzaman(1968) was the first to consider the Bayesian approach for
classical Pareto distribution. Arnold and Press(1983), Geissor(1984), Nigm and
Hamdy(1987) have discussed the Bayesian approaches in the Pareto distribution.
Recently, Bayesian estimation of shape parameter of classical Pareto distribution is
provided by Pandey, Singh and Mishra(1996), and Tiwari, Yang and Zalkikar(1996).

Problem of predicting a future observation has received much attention and
has been dealt mainly in two approaches. One is the usual classical approach
and the other is Bayesian approach. Based the Bayesian approach, Chhikara and
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Guttman(1982), Sinha(1989), Upadhyay and Pandey(1989) and Nigm and AL- Wa-
hab(1996) suggested the Bayesian inference about prediction for Gaussian, lognor-
mal, exponential and Burr distributions, respectively.

In the paper, we obtain Bayesian predictive distributions and consider the pre-
diction intervals of future observations based upon the random sampling from the
censored Pareto model.

In Section 2, we consider the Bayesian predictive density and prediction intervals
for a future observation from the pareto distribution. As a prior distribution, we
consider a noninformative prior and an inverted gamma prior.

In Section 3, we deal with the problem of Bayesian prediction analysis for the
p — th order statistic of n/ future observations.

In Section 4, Numerical examples are given in order to illustrate the proposed
predictive procedure.

2. Prediction of a Future Observation

Let X = (X1,X3,---,X,) be a random sample from the Pareto distribution
with unknown parameter  and known parameter o whose the probability density
function is given by

f(zl8,0) =072z~ > (1)

where o > 0 is a scale parameter and § > 0 may be called the shape parameter.
Then the likelihood function of X1 £ X < -+ £ X(;) under the type II
censoring at r — th failure is

L(0,0|z) < 0"exp [—0 (ln (x’(;r [T xi— nlna) )]
0>0,0>0,z,>0,1=1,---,r. (2)

Now, a noninformative prior distribution for 8 is given by

T0) x5, >0, (3)

Then the posterior density of 6 given X =z is

r—1

w(0|z,0) = f_,—(r—)(an)rexp(—an K), 0<60< oo, (4)

where K = a'"x?rjr (HLI wz) .
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The distribution of a future observation y given 8, o is
6o°
f(y|9,cr,§)=?—ﬂ—ﬂ, y>ao, 6>0, 0>0. (5)
Therefore the predictive density function of a future observation y can be derived
and is given in the following theorem.

Theorem 2.1 If a noninformative prior of # is used, the predictive density
function of a future observation is given by

r(InK)*

y[an —1In (a/y)]rw

Under a noninformative prior for 8, the 100(1—+) % equal-tail prediction interval
(Cnr,Cny) for a future observation y is

m(ylz) = y>o. (6)

(oexe[tn =927~ 1), cexp[tnkir/2) - )| )

Also, the 100(1 — v) % most plausible prediction bounds My, and Myy are the
simultaneous solution of

[ In K ]’_[ InK ]T-l—
InK +In (Myz/o) mK +In(Mxy/o)] )

and

[lnl(-%ln(AlNU/a)] _ Myp
InK +1In(Myp /o) Myy’

Consider an inverted gamma prior distribution with parameter o , 8 , which is
given by

(a4
w(0|a, B) = i"—ﬁ(ajoa_l exp(—ﬂ@), 0<f<oo, a 8>0. (7
Then from the equations (2) and (7), the posterior density function of # given
X =z is given by

r+a+1

(6lo,z) = rg(TJrlﬁ(ﬁ +In K)™ exp [~0(ﬂ +ln K)] . ®)
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Hence the predictive density of a future observation can be derived and is given
by in the following theorem.

Theorem 2.2. For the inverted gamma prior with the parameters o and 3 for
6, the predictive density function of a future observation y is given by

(r+a)(B+InK)*

y[(ﬁ+ In K) — In(o/y)

> 0. 9)

W(yl&) = :‘T+a+1’ Y=z

With the inverted gamma prior distribution with parameters o and 3 for 6, the
100(1 — v) % equal-tail prediction limits Cr, and Cgy for y is as follows:

(vem[B+mB)(@ - /24—,
sexp|(B+nK)(v/2)V0r) - 1)] ).

Also the 100(1 —v) % most plausible prediction interval (Mgr, Mgy ) of a future
observation y is obtained by solving simultaneously the following equations:

[ (B+InK) JTM“[ (B+InK) ]T+a;1_7
(B+InK)+In(Mgr/o) (B+InK)+In(Mgyu/o)

and

[(ﬂ +InK)+ lnl(MGU/U)}THH'l _ Mgy,
(ﬂ+an)+ln (MGL/O') MGU.

3. Prediction of the Ordered Observation

In this section, we consider the predictive density function of the p — ¢th order
statistic, Y(;), of n’ future observations when the distribution follows the Pareto
distribution. Here the probability density function of Y, is as follows:

0 =l p-1 o\ (W-pri+1e
97 o)= E . —1)7 (—) )
Iwpl0) Yo B, —p+1) 1 ( J ) =1 Y)

Yp 20, 12p>n'. (10)
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Then the following theorem holds.

Theorem 3.1 If a noninformative prior distribution for 6 is used, the predictive
density function of p — th order statistic, Y(p), of n’ future observations is given by

B r(ln K)" Sp-1\, .y
T(Yyplz) = y(p)B(p,n’—p+1)Z< j )( 1)

Jj=0

o —~(r+1)
X [an (n' —p+]+1)ln( )] y Yp) =0 (11)
Yp)

With a noninformative prior distribution of 8, the 100(1 — ) % equal-tail pre-

diction interval (Cnr,Cny) for the p — th order statistics, Y(p)> in a future sample
of n’ items are the solutions of the equations:

Y _ (nf 1
2 B(Pn—p+1)z< ) IR
InK "
x{l—an+(n/_p+j+1)ln(CNU/0)}

and
%: B(p,n’ p+ I)Z( ) l)j(n'_p+j+1)_1

x{ InK }’"
InK + (n'—p+j+ 1)In(Cyr/o))

Furthermore, the 100(1 — 7) % most plausible prediction interval (Myr, M)
for y(,) is obtained by solving simultaneously the followings:

1 ; _
B(p,n’ — p+1)z< >( Yn=—p+i+D™

x[1+ (n' —P+J;21H(MNL/U)} "
- 1 Ii‘( _-1)(—1)1'(rz—zo+j+1)‘1
B(p,n' —p+1) J
x{ (n —p+]+1)ln(MNU/a')]
InK

= ]_—Py
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and

Ep-1 iin -1y, (@ =p+ i+ Din(Myp/o)] 70
MNU]Z:%( ; >(‘1) (n'—p+j+1) [1 e J

Plip—1 - o (0 —p+j + Din(Myy /o)) =D
ZMNLJ;O( ; )(—I)J(n ~p+j+1) 1[1 - ] )

Theorem 3.2. With the inverted gamma prior with parameters a and 3 for 4,
the predictive density function of Yp) 18

B+ K)*(r + ) ;
m(yplz) = oy B —p+ 1) Z( )( 1)

—(r+a+1)

x[(ﬂ—l—an) (n—p+]+1)ln(?p))} ) >0 (12)

If the inverted gamma prior with parameters o and 3 for 8 is used, then the
100(1 - v) % equal-tail prediction interval (Cgr,Cgy) of y, can be obtained by
solving two equations

Y ! —
2" Bl - p+1)Z( )( P —p+i+ 1)

{1 3 ﬂ +InK }r+a
(B+InK)+ (0 —p+j+ DIn(Cer/0)

and

i ‘ J
2~ B(p,n - p+1)z( >( Y -p+i+ T

{ B+InK }’M
(B+mK)+ (W —p+j+1)In(Cev/o)f

Also the 100(1 — )% most plausible prediction bounds Mg and Mgy for the
p—th order statistics, y(;), in a future sample of n’ items can be obtained by solving
the following equations simultaneously:
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1 —(r-1 o
B(p,n’—p—{—]_)j ( j )("1) (n p+J+1)l

1
=0
(n'—p+7+ l)ln(MGL/a)] ~(r+a)

(B+InK)

1 -1 - , .
" Bl n’—p+1)z( j )(_I)J(n—pﬂﬂ)—
) =0

x[1+

(W —p+j+1)n(Mgy /o) ] ~(r+e)

X[1+ (B+InK)
:l—fy

and

S p—1 T . - (n'—p-i-j-}-l)ln(MGL/g) —(r+a+l)
MGUng( i )(—1) (n'-p+j+1) 1[1+ Ry ]

e S (P i syt [y (=Pt + DIn(Mey fo) =D
_MGLg)( i )(-1) (n'—p+j+1) [14— K ] .

4. Numerical Examples

In this Section, to predict a future observation and the p — th order statistic
of n’ future observation, the data were generated artifically from the Pareto mode.
with unkown parameter § and kown parameter o under the Type II censoring. It
1s assumed that only the first 20(twenty percent cesoring) ordered failure times are
available, and they are given as follows:

2.0329 2.2015 2.4660 2.0385 5.0060 3.2459 2.9942 4.3439 5.4538 2.0346
5.1906 2.5148 2.0626 2.4487 3.2138 4.2926 2.3897 3.5802 2.0823 3.0921

Under a noninformative prior and an inverted gamma prior, the 95 % equal-tail
prediction intervals and the 95 % highest posterior density prediction intervals are
given by '

(Cni, Cny) = (2.0328, 26.9943), (Cor, Coy) = (2.0361, 34.6239)
and

(Myz, Myy) = (2.0000, 15.9463), (Mgz, Moy) = (2.0000, 19.4891)
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respectively. From this result, one can see that both prediction intervals sensitive
to the changes of the prior.

10.
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