• Title/Summary/Keyword: density functional method

Search Result 296, Processing Time 0.027 seconds

Variation of the Physical Properties of Coal depending upon the Quality (탄질에 따른 석탄의 물성 변화)

  • Kwon, Byung Doo;Heo, Sik
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.97-106
    • /
    • 1988
  • The purpose of this study is to collect basic data which are prerequisite for quantitative analysis of coal logging data. The study involves laboratory measurements of physical properties such as seismic velocities (P,S-waves), resitivity and density of domestic and imported foreign coals. The relationships between these properties were analyzed by using cross-plots. Correlation between the physical properties of coal and the results of chemical analysis (calorie, fixed carbon, ash, moisture, volatile matter and sulfur contents) was also studied to obtain ideas about coal quality analysis using logging data. Summarized results are as follows: 1. $V_P$ is exponentialy related to $V_S$. And the average value of $V_P$ is about l.8 times as large as $V_S$. 2. Since coal has very low density compared with surrounding sedimentary rocks, density logging is appeared to be the best method for identifying coal seams and evaluating their qualities. 3. For the case of domestic coals, the ash contents and calorie show a perfect inverse relationship. Since the density increases as increase of ash content with a well-defined functional form, the ash content of domestic coals can be estimated by density measurements. 4. Because of low ash content, low density and high resistivity, foreign coals and domestic lignites are easily distinguished from domestic coals.

  • PDF

Synthesis of Model Microspheres and Adsorption Study of Bovine Albumin (모델 Microspheres의 합성 및 Bovine Albumin의 흡착)

  • 박영준;윤정열
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.209-220
    • /
    • 1993
  • Microspheres are expected to be applied to biomedical areas such as solid-phase immunoassays, drug delivery systems, Immunomagnetic cell separation. To synthesize micro-spheres for biomedical application, "two stage shot growth method" was developed. The uniformity ratio or synthesized microspheres was always smatter than 1.05. And the surface charge density (or the number of ionizable functional groups) of the microspheres synthesized by "two stage shot growth method" was 6-13 times higher than thats of the ml crospheres synthesized by conventional seeded batch copolymerization. As a previous step for biomedical application, adsorption experiments of bovine albumin on microspheres were carried out under various conditions. The maximum adsorbed amount was obtained in the neighborhood of pH 4.5. Isoelectric point of bovine albumin Is pH 5.0, so experimental result shows that it shifted to acid area. The adsorption Isotherm was obtained, the plateau region was always reached at 2.Og/L (bulk concentration of bovine albumin ) . The effect of the kind and the amount of surface functional group was also examined.p was also examined.

  • PDF

초전도 NMR-CT의 영상 원리 및 그 응용

  • 조장희
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.183-190
    • /
    • 1986
  • Microspheres are expected to be applied to biomedical areas such as solid-phase immunoassays, drug delivery systems, immunomagnetic cell separation. To synthesize microspheres for biomedical application, "two stage shot growth method" was developed. The uniformity ratio of synthesized microspheres was always smaller than 1.05. And the surface charge density (or the number of ionizable functional groups) of the microspheres synthesized by "two stage shot growth method" was 6~13 times higher than that of the microspheres synthesized by conventional seeded batch copolymerization. As a previous step for biomedical application, adsorption experiments of bovine albumin on microspheres were carried out under various conditions. The maximum adsorbed amount was obtained in the neighborhood of pH 4.5. Isoelectric point of bovine albumin is pH 5.0, so experimental result shows that it shifted to acid area. The adsorption isotherm was obtained, the plateau region was always reached at 2.Og/L (bulk concentration of bovine albumin).The effect of the kind and the amount of surface functional group was also examined.p was also examined.

  • PDF

Suppressing Effect of Hydrogen Evolution by Oxygen Functional Groups on CNT/ Graphite Felt Electrode for Vanadium Redox Flow Battery (탄소나노튜브/흑연펠트 전극의 산소작용기를 활용한 바나듐 레독스 흐름 전지의 수소발생 억제 효과)

  • Kim, Minseong;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Vanadium redox flow batteries (VRFB) have emerged as large-scale energy storage systems (ESS) due to their advantages such as low cross-contamination, long life, and flexible design. However, Hydrogen evolution reaction (HER) in the negative half-cell causes a harmful influence on the performance of the VRFB by consuming current. Moreover, HER hinders V2+/V3+ redox reaction between electrode and electrolyte by forming a bubble. To address the HER problem, carbon nanotube/graphite felt electrode (CNT/GF) with oxygen functional groups was synthesized through the hydrothermal method in the H2SO4 + HNO3 (3:1) mixed acid solution. These oxygen functional groups on the CNT/GF succeed in suppressing the HER and improving charge transfer for V2+/V3+ redox reaction. As a result, the oxygen functional group applied electrode exhibited a low overpotential of 0.395 V for V2+/V3+ redox reaction. Hence, this work could offer a new strategy to design and synthesize effective electrodes for HER suppression and improving the energy density of VRFB.

Effect of Ozone Treatment on Dyeability of Polyethylene Film (오존 처리가 폴리에틸렌 필름의 염색성에 미치는 영향)

  • 박수진;신준식;김학용;이덕래
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.98-105
    • /
    • 2003
  • The surface energy and the effect of functional groups on the surface of the ozone-treated low-density polyethylene (LDPE) film were studied. Treatment conditions were treatment time, total amount of transferred ozone, and ozone concentration. The introduction of polar groups on the surface of LDPE film after ozone treatment was confirmed by FTIR-ATR and XPS analyses. Surface fee energy of the LDPE film was examined by a contact angle method. The ozone treated-LDPE film showed a decreased water contact angles about 15$^{\circ}$ mainly due to the increased concentration of oxygen-containing functional groups, which was attributed to the increased surface free energy or $O_{IS}/C_{IS}$Also, the concentrations of the oxygen-containing functional groups on the surface of LDPE film increased with ozone treatment time and concentration, whereas no significant effects were found for the total amount of transferred ozone. From the dyeability test using Kubelka-Munk equation, it was found that the ozone treatment plays an important role in the growth of oxygen-containing functional groups of LDPE film, resulting in the improvement of dyeability for basic dyeing agent.

Fabrication of the Functional Coatings of a Tubular Solid Oxide Fuel by Plasma Spray Processes. (플라즈마 용사법을 이용한 원통형 고체산화물 연료전지의 요소피막 제조)

  • 주원태;홍상희
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.5
    • /
    • pp.333-346
    • /
    • 1997
  • Plasma spray processes for functional coatings of tubular SOFC ( Soild oxide Fuel Cell).consisting of air electrode, oxide electrolyte, an fuel electrode, are optimized by fully saturated fractional factorial testing. Material and electric characteristics of each coating are analtsed by the implementation of SEM and optical microscope for evaluating microstructure and porosity, X-ray diffraction method for investigating compositional change between raw powder and sprayed coating, and Van der Pauw method for measuring electrical conductivity. LSM ($La_{0.65}Sr_{0.35}MnO_3$air electrode and Ni-YSL fuel electrode coatings have porosities of around 23~30% sufficient for effective fuel and oxidant gas supply to electrochemical reaction interfaces and electrical conductivities of around 90 S/cm and 1000 S/cm, respectively, enough for acting as current collecting electrodes. YSZ($ZrO_2-8mol%Y_2O_3$) electrolyte film has a high ionic conductivities of 0.05~0.07 S/cm at $1000^{\circ}C$ in air atmosphere, but appears to be somewhat too porous to reduce the thickness. for enhancing the cell efficiency. A unit tubular SOFC has beem fabricated by the optimized plasma spray processes for each functional coating and the cell. Its electrochemical chracteristics are investigated by measuring voltage-current and power density with variation of operationg temperature, radio of fuel to air gas flowrates, and total gas flowrate of reactants.

  • PDF

A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x)

  • Siddique, Muhammad;Rahman, Amin Ur;Iqbal, Azmat;Azam, Sikander
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1373-1380
    • /
    • 2019
  • Besides promising implications as fertile nuclear materials, thorium carbonitrides are of great interest owing to their peculiar physical and chemical properties, such as high density, high melting point, good thermal conductivity. This paper reports first-principles simulation results on the structural, electronic and magnetic properties of cubic thorium carbonitrides $ThC_xN_{(1-x)}$ (X = 0.03125, 0.0625, 0.09375, 0.125, 0.15625) employing formalism of density-functional-theory. For the simulation of physical properties, we incorporated full-potential linearized augmented plane-wave (FPLAPW) method while the exchange-correlation potential terms in Kohn-Sham Equation (KSE) are treated within Generalized-Gradient-Approximation (GGA) in conjunction with Perdew-Bruke-Ernzerhof (PBE) correction. The structural parameters were calculated by fitting total energy into the Murnaghan's equation of state. The lattice constants, bulk moduli, total energy, electronic band structure and spin magnetic moments of the compounds show dependence on the C/N concentration ratio. The electronic and magnetic properties have revealed non-magnetic but metallic character of the compounds. The main contribution to density of states at the Fermi level stems from the comparable spectral intensity of Th (6d+5f) and (C+N) 2p states. In comparison with spin magnetic moments of ThSb and ThBi calculated earlier with LDA+U approach, we observed an enhancement in the spin magnetic moments after carbon-doping into ThN monopnictide.

Census Metropolitan Area/Census Agglomeration in Canada (캐나다의 도시권 획정)

  • Byun, Pill-Sung;Kim, Kwang-Ik
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.261-272
    • /
    • 2006
  • This work examines the delimitation of metropolitan areas in Canada, focusing on the Census Metropolitan Areas/Census Agglomerations(CMAs/CAs) that the Statistics Canada defines every Census year. The CMA/CA is built upon the functional-area method which is among the three approaches (i.e., density-based, land use-based, functional-area approaches) to the definition of an urban area. Importantly, the delimitation of a CMA/CA employs the Urban Area(UA) which the Statistics Canada defines via density-based and land use-based methods. In particular, the UA which has 10,000 or more residents is the urban core of a CMA/CA. Our examination of the CMA/CA in Canada also presents some points to be considered with regard to the delimitation of metropolitan areas in Korea which has yet to be implemented.

  • PDF

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

Rapid Sintering of Nanostuctured Tungsten Carbide by High-Frequency Induction Heating and its Mechanical Properties (고주파유도 가열에 의한 나노구조의 텅스텐 카바이드 급속소결과 기계적 성질)

  • Kang, Hyun-Su;Doh, Jung-Mann;Hong, Kyung-Tae;Ko, In-Yong;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1009-1013
    • /
    • 2010
  • Extremely dense WC with a relative density of up to 99% was obtained within five minutes under a pressure of 80 MPa using the High-Frequency Induction Heated Sintering method. The average grain size of the WC was about 71 nm. The advantage of this process is not only rapid densification to obtain a neartheoretical density but also the prohibition of grain growth in nano-structured materials. The hardness and fracture toughness of the dense WC produced by HFIHS were $2660kg{\cdot}mm^{-2}$ and $7.2MPa{\cdot}m^{1/2}$, respectively.