• Title/Summary/Keyword: density evolution

Search Result 485, Processing Time 0.035 seconds

Spatially and Time Resolved Optical Diagnostics for High Pressure Microdischarges

  • Pu, Yi-Kang;Zhu, Xi-Ming;Huang, Bang-Dou;Takashima, Keisuke
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.140-140
    • /
    • 2013
  • This presentation will describe recent developement in spatially and time resolved optical diagnostics for two kinds of the high pressure microdischarges. The first kind is a nanosecond pulsed discharge with two pin electrodes while the second kind is a microwave split ring resonator developed by Jeff Hopwood. Both spatially and time resolved optical emissions are collected for these two discharges and some interesting phenomena are observed. By using either the Stark broadening or a collisional radiative model for high pressure discharges, the evolution of electron density can be obtained. We will compare these different techniques for obtaining the electron density and discuss their limitations.

  • PDF

Cosmic Evolution of Submillimeter Galaxies and Their Effects on the Star Formation Rate Density

  • Kim, Sungeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.27-27
    • /
    • 2013
  • Development of bolometer array and camera at millimeter and submillimeter wavelengths plays an important role for detecting submillimeter galaxies (SMGs) which appear to be very bright at the submillimeter and millimeter wavelengths. These SMGs, luminous infrared galaxies detected at mm/submm wavelengths seem to be progenitors of present-day massive galaxies and account for their considerable contributions to the light from the early universe and their expected high star formation rates (SFRs) if there is a close link between the SMG phenomena and the star formation activities and the interstellar dust in galaxies is mainly heated by the star light. In this talk, we review assembly of SMGs compiled with observations using the bolometer arrays and cameras and investigate their spectral energy distribution fits including the data at other wavelengths which trace the photometric properties and the red-shift distribution of galaxies. We find that these bright SMGs significantly contribute to the cosmic star formation rate density at red-shifts of 2-3 (about 8 %) for the spatial distribution of these galaxies.

  • PDF

FORMULATION AND CONSTRAINTS ON LATE DECAYING DARK MATTER

  • LAN, NGUYEN Q.;VINH, NGUYEN A.;MATHEWS, GRANT J.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.315-319
    • /
    • 2015
  • We consider a late decaying dark matter model in which cold dark matter begins to decay into relativistic particles at a recent epoch ($z{\leqslant}1$). A complete set of Boltzmann equations for dark matter and other relevant particles particles is derived, which is necessary to calculate the evolution of the energy density and density perturbations. We show that the large entropy production and associated bulk viscosity from such decays leads to a recently accelerating cosmology consistent with observations. We determine the constraints on the decaying dark matter model with bulk viscosity by using a MCMC method combined with observational data of the CMB and type Ia supernovae.

Enhancing hydrogen evolution activity of MoS2 basal plane by substitutional doping and strain engineering

  • Kim, Byeong-Hun;Lee, Byeong-Ju
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.280-284
    • /
    • 2016
  • 본 연구에서는 Density functional theory(DFT) 계산을 이용하여, $MoS_2$의 Mo와 S를 다른 원자로 치환 했을 때 $2H-MoS_2$ monolayer의 basal plane에서 HER활성을 향상시켰다. 특히 Ge와 Rh를 치환한 경우, ${\Delta}G_H$가 각각 0.03eV, 0,07eV로 최적에 가까운 HER활성이 나타났다. 다른 원자의 치환이 Fermi level 근처의 DOS(density of states)를 높여, ${\Delta}G_H$을 0에 가깝게 낮출 수 있음을 확인하였다. 또한 치환되는 원자의 농도, 그리고 strain을 변화시켜 농도와 strain의 증가에 따른 ${\Delta}G_H$ 감소를 발견했다. 이로써 각치환되는 원자마다, 치환 농도와 strain을 함께 변화시켜 ${\Delta}G_H$을 낮출 수 있었다. ${\Delta}G_H$가 0에 가까운(${\pm}{\pm}0.2eV$ 이내) 원자종류, 치환 농도, strain의 여러 조합을 찾았다.

  • PDF

Effect of Residual Carbon on the Microstructure Evolution during the Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process

  • Herranz, G.;Levenfeld, B.;Varez, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.225-226
    • /
    • 2006
  • In this present investigation, Metal Injection Moulding (MIM) of M2 High Speed Steel (HSS) parts using a wax-High Density Polyethylene (HDPE) binder is shown. The elimination of organic binder was carried out by thermal debinding under inert atmosphere. In order to keep carbon in the sample that could improve the sintering process, incomplete debinding was performed between 450 and $600^{\circ}C$. The specimens were sintered at temperatures between 1210 and $1280^{\circ}C$ in high vacuum atmosphere, obtaining the 98% of the theoretical density. In the samples with higher residual carbon content, the sintering window was extended up to 20 degrees and the optimum temperature was lower.

  • PDF

Environmental Dependence of High-redshift Galaxies in CFHTLS W2 Field

  • Paek, Insu;Im, Myungshin;Kim, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.36.1-36.1
    • /
    • 2018
  • Star formation activity of galaxies, along with color and morphology, show significant environmental dependence in local universe, where galaxies in dense environment tend to be more quiescent and redder. However, many studies show that such environmental dependence does not continue at higher redshifts beyond z~1. The question of how the environmental dependence of galactic properties have developed over time is crucial to understanding cosmic galactic evolution. By combining data from Canada-France-Hawaii Telescope Legacy Survey(CFHTLS), Infrared Medium-Deep Survey(IMS), and other surveys, the photometric redshifts of galaxies in CFHTLS W2 field were estimated by fitting spectral energy distribution. The distribution of galaxies was mapped in redshift bins of 0.05 interval from 0.6 to 1.4. For each redshift bin, the number density was mapped. The galaxies in high density regions were grouped into clusters using friend-of-friend method. The color of galaxies were analyzed to study the correlation with redshift as well as environmental difference between field galaxies and cluster member galaxies.

  • PDF

Multi-time probability density functions of the dynamic non-Gaussian response of structures

  • Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.631-641
    • /
    • 2020
  • In the present work, an approach for the multiple time probabilistic characterization of the response of linear structural systems subjected to random non-Gaussian processes is presented. Its fundamental property is working directly on the multiple time probability density functions of the actions and of the response. This avoids of passing through the evaluation of the response statistical moments at multiple time or correlations, reducing the computational effort in a consistent measure. This approach is the extension to the multiple time case of a previously published dynamic Probability Transformation Method (PTM) working on a single evolution of the response statistics. The application to some simple examples has revealed the efficiency of the method, both in terms of computational effort and in terms of accuracy.

A Deep Convolutional Neural Network approach to Large Scale Structure

  • Sabiu, Cristiano G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.53.3-53.3
    • /
    • 2019
  • Recent work by Ravanbakhsh et al. (2017), Mathuriya et al. (2018) showed that convolutional neural networks (CNN) can be trained to predict cosmological parameters from the visual shape of the large scale structure, i.e. the filaments, clusters and voids of the cosmic density field. These preliminary works used the dark matter density field at redshift zero. We build upon these works by considering realistic mock galaxy catalogues that mimic true observations. We construct light-cones that span the redshift range appropriate for current and near future cosmological surveys such as LSST, EUCLID, WFIRST etc. In summary, we propose a novel multi-image input CNN to track the evolution in the morphology of large scale structures over cosmic time to constrain cosmology and the expansion history of the Universe.

  • PDF

Monitoring Observations of Active White Dwarf Binary Systems

  • Lee, Hee-Won;Choi, Bo-Eun;Im, Myungshin;Lim, Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.60.3-60.3
    • /
    • 2019
  • Binary systems of a white dwarf showing mass transfer activities are classified into cataclysmic variables and symbiotic stars. In the case of cataclysmic variables, the companion is usually a late type main sequence star filling its Roche lobe, where material is transferred through the inner Lagrangian point to form an accretion disk around the white dwarf. The disk becomes unstable and highly viscous when the surface density exceeds the critical density, leading to dwarf nova outbursts. In contrast, symbiotic stars are wide binary systems having a giant as the mass donor. Some fraction of giant stellar wind is accreted to the white dwarf giving rise to various symbiotic activities. In particular, half of symbiotics show Raman O VI at 6830 and 7088, which are important spectroscopic probe of mass transfer process. Monitoring observations using 1 m class telescopes will produce valuable information regarding the mass loss and mass transfer to white dwarf stars, shedding much light on the last stage of stellar evolution of low and intermediate mass stars.

  • PDF

Theoretical prediction on thickness distribution of cement paste among neighboring aggregates in concrete

  • Chen, Huisu;Sluys, Lambertus Johannes;Stroeven, Piet;Sun, Wei
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.163-176
    • /
    • 2011
  • By virtue of chord-length density function from the field of statistical physics, this paper introduced a quantitative approach to estimate the distribution of cement paste thickness between aggregates in concrete. Dynamics mixing method based on molecular dynamics was employed to generate one model structure, then image analysis algorithm was used to obtain the distribution of thickness of cement paste in model structure for the purpose of verification. By comparison of probability density curves and cumulative probability curves of the cement paste thickness among neighboring aggregates, it is found that the theoretical results are consistent with the simulation. Furthermore, for the model mortar and concrete mixtures with practical volume fraction of Fuller-type aggregate, this analytical formula was employed to predict the influence of aggregate volume fraction and aggregate fineness. And evolution of its mean values were also investigated with the variation of volume fraction of aggregate as well as the fineness of aggregates in model mortars and concretes.