Browse > Article
http://dx.doi.org/10.5303/PKAS.2015.30.2.315

FORMULATION AND CONSTRAINTS ON LATE DECAYING DARK MATTER  

LAN, NGUYEN Q. (Hanoi National University of Education)
VINH, NGUYEN A. (Hanoi National University of Education)
MATHEWS, GRANT J. (Center for Astrophysics, Department of Physics, University of Notre Dame)
Publication Information
Publications of The Korean Astronomical Society / v.30, no.2, 2015 , pp. 315-319 More about this Journal
Abstract
We consider a late decaying dark matter model in which cold dark matter begins to decay into relativistic particles at a recent epoch ($z{\leqslant}1$). A complete set of Boltzmann equations for dark matter and other relevant particles particles is derived, which is necessary to calculate the evolution of the energy density and density perturbations. We show that the large entropy production and associated bulk viscosity from such decays leads to a recently accelerating cosmology consistent with observations. We determine the constraints on the decaying dark matter model with bulk viscosity by using a MCMC method combined with observational data of the CMB and type Ia supernovae.
Keywords
cosmology:dark matter; cosmology:dark energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abazajian, K., Fuller, G. M., & Patel, M. 2001, Sterile Neutrino Hot, Warm, and Cold Dark Matter, PhRvD, 64b, 3051a
2 Amanullah, R., Lidman, C., & Rubin, D., et al., 2010, Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511 $!`$ z $!`$ 1.12 and the Union2 Compilation, ApJ, 716, 712   DOI
3 Carroll, S. M., Press, W. H., & Turner, E. L., 1992, The Cosmological Constant, ARA&A, 30, 499   DOI   ScienceOn
4 Chikashige, Y., Mohapatra, R. N., & Peccei, R. D., 1980, Spontaneously Broken Lepton Number and Cosmological Constraints on the Neutrino Mass Spectrum, PhRvL, 45, 1926
5 Hamaguchi, K., Nomura, Y., & Yanagida, T., 1998, Superheavy Dark Matter with Discrete Gauge Symmetries, PhRvD, 58, 3503
6 Hu, W. & Sugiyama, N. 1996, Small-Scale Cosmological Perturbations: an Analytic Approach, ApJ, 471, 542   DOI
7 Komatsu, E., et al., [WMAP Collaboration], 2011, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, ApJS, 192, 18   DOI
8 Lewis, A. & Bridle, S., 2002, Cosmological Parameters from CMB and Other Data: A Monte Carlo Approach, PhRvD, 66, 3511
9 Mangano, G., Miele, G., Pastor, S., & Peloso, M., 2002, A Precision Calculation of the E ective Number of Cosmological Neutrinos, PhLB, 534, 8
10 Mathews, G. J., Lan, N. Q., & Kolda, C., 2008, Late Decaying Dark Matter, Bulk Viscosity, and the Cosmic Acceleration, PhRvD, 78, 3525
11 Page, L., et al., 2003, First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks, ApJS, 148, 233   DOI   ScienceOn
12 Weinberg, S. 1971, Entropy Generation and the Survival of Protogalaxies in an Expanding Universe, ApJ, 168, 175   DOI
13 Wilczek, F. 1982, Axions and Family Symmetry Breaking, PhRvL, 49, 1549
14 Wilson, J. R., Mathews, G. L., & Fuller, G. M., 2007, Bulk Viscosity, Decaying Dark Matter, and the Cosmic Acceleration, PhRvD, 75, 3521
15 Yuksel, H., Horiuchi, S., Beacom, J. F., & Ando, S., 2007, Neutrino Constraints on the Dark Matter Total Annihilation Cross Section, PhRvD, 76, 3506